Branching processes, the Ray-Knight theorem, and sticky brownian motion
Séminaire de probabilités de Strasbourg, Tome 31 (1997), pp. 1-15.
@article{SPS_1997__31__1_0,
     author = {Warren, Jonathan},
     title = {Branching processes, the {Ray-Knight} theorem, and sticky brownian motion},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {1--15},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {31},
     year = {1997},
     mrnumber = {1478711},
     zbl = {0884.60081},
     language = {fr},
     url = {http://www.numdam.org/item/SPS_1997__31__1_0/}
}
TY  - JOUR
AU  - Warren, Jonathan
TI  - Branching processes, the Ray-Knight theorem, and sticky brownian motion
JO  - Séminaire de probabilités de Strasbourg
PY  - 1997
SP  - 1
EP  - 15
VL  - 31
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1997__31__1_0/
LA  - fr
ID  - SPS_1997__31__1_0
ER  - 
%0 Journal Article
%A Warren, Jonathan
%T Branching processes, the Ray-Knight theorem, and sticky brownian motion
%J Séminaire de probabilités de Strasbourg
%D 1997
%P 1-15
%V 31
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1997__31__1_0/
%G fr
%F SPS_1997__31__1_0
Warren, Jonathan. Branching processes, the Ray-Knight theorem, and sticky brownian motion. Séminaire de probabilités de Strasbourg, Tome 31 (1997), pp. 1-15. http://www.numdam.org/item/SPS_1997__31__1_0/

[1] M. Amir. Sticky Brownian motion as the strong limit of a sequence of random walks. Stochastic Processes and their Applications, 39:221-237, 1991. | MR | Zbl

[2] R.J. Chitashvili. On the nonexistence of a strong solution in the boundary problem for a sticky Brownian motion. Technical Report BS-R8901, Centre for Mathematics and Computer Science, Amsterdam, 1989.

[3] W. Feller. On boundaries and lateral conditions for the Kolmogorov equations. Annals of Mathematics, Series 2, 65:527-570, 1957. | MR | Zbl

[4] J.M. Harrison and A.J. Lemoine. Sticky Brownian motion as the limit of storage processes. Journal of Applied Probability, 18:216-226, 1981. | MR | Zbl

[5] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North Holand-Kodansha, Amsterdam and Tokyo, 1981. | MR | Zbl

[6] F.B. Knight. Essentials of Brownian motion and Diffusion, volume 18 of Mathematical Surveys. American Mathematical Society, Providence, Rhode-Island, 1981. | MR | Zbl

[7] J.F. Le Gall Cours de troisième cycle, Laboratoire de Probabilités, Paris 6. 1994.

[8] J.W. Pitman and M. Yor. A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitstheorie, 59:425-457, 1982. | MR | Zbl

[9] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer, Berlin, 1991. | MR | Zbl

[10] L.C.G. Rogers and D. Williams. Diffusions, Markov processes and Martingales, vol 2: Itô calculus. Wiley, New York, 1987. | MR | Zbl

[11] T. Shiga and S. Watanabe. Bessel diffusions as a one-parameter family of diffusion processes. Zeitschrift für Wahrscheinlichkeitstheorie, 27:37-46, 1973. | MR | Zbl

[12] K. Yamada. Reflecting or sticky Markov processes with Lévy generators as the limit of storage processes. Stochastic Processes and their Applications, 52:135-164, 1994. | MR | Zbl

[13] M. Yor. Some remarks concerning sticky Brownian motion. Unpublished, 1989.

[14] M. Yor. Some aspects of Brownian motion, part 1: Some special functionals. Birkhäuser, 1992. | MR | Zbl