The excessive domination principle is equivalent to the weak sector condition
Séminaire de probabilités de Strasbourg, Tome 24 (1990), pp. 466-472.
@article{SPS_1990__24__466_0,
     author = {Vondra\v{c}ek, Zoran},
     title = {The excessive domination principle is equivalent to the weak sector condition},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {466--472},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {24},
     year = {1990},
     mrnumber = {1071563},
     zbl = {0704.60077},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1990__24__466_0/}
}
TY  - JOUR
AU  - Vondraček, Zoran
TI  - The excessive domination principle is equivalent to the weak sector condition
JO  - Séminaire de probabilités de Strasbourg
PY  - 1990
SP  - 466
EP  - 472
VL  - 24
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1990__24__466_0/
LA  - en
ID  - SPS_1990__24__466_0
ER  - 
%0 Journal Article
%A Vondraček, Zoran
%T The excessive domination principle is equivalent to the weak sector condition
%J Séminaire de probabilités de Strasbourg
%D 1990
%P 466-472
%V 24
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1990__24__466_0/
%G en
%F SPS_1990__24__466_0
Vondraček, Zoran. The excessive domination principle is equivalent to the weak sector condition. Séminaire de probabilités de Strasbourg, Tome 24 (1990), pp. 466-472. http://www.numdam.org/item/SPS_1990__24__466_0/

1. R.M. Blumenthal and R.K. Getoor, "Markov Processes and Potential Theory," Academic Press, New York, 1968. | MR | Zbl

2. B. Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139-215. | MR | Zbl

3. J. Glover, Topics in energy and potential theory, in Seminar on Stochastic Processes (1983), 195-202, Birkhäuser, Boston. | MR | Zbl

4. J. Glover and M. Rao, Symmetrizations of Markov Processes, Journal of Theoretical Probability 1 (1988), 305-325. | MR | Zbl

5. K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math.Scand. 45 (1979), 77-102. | MR | Zbl

6. Z. Pop-Stojanovic and M. Rao, Convergence in Energy, Z.Wahrsch.verw.Geb. 69 (1985), 593-608. | MR | Zbl

7. M. Rao, Capacitary inequalities for energy, Israel Journal of Math. 61, No.2 (1988), 179-191. | MR | Zbl