@article{AMBP_1999__6_1_33_0, author = {Ludkovsky, S.V.}, title = {Properties of quasi-invariant measures on topological groups and associated algebras}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {33--45}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {6}, number = {1}, year = {1999}, mrnumber = {1693126}, zbl = {0936.22004}, language = {en}, url = {http://www.numdam.org/item/AMBP_1999__6_1_33_0/} }
TY - JOUR AU - Ludkovsky, S.V. TI - Properties of quasi-invariant measures on topological groups and associated algebras JO - Annales mathématiques Blaise Pascal PY - 1999 SP - 33 EP - 45 VL - 6 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - http://www.numdam.org/item/AMBP_1999__6_1_33_0/ LA - en ID - AMBP_1999__6_1_33_0 ER -
%0 Journal Article %A Ludkovsky, S.V. %T Properties of quasi-invariant measures on topological groups and associated algebras %J Annales mathématiques Blaise Pascal %D 1999 %P 33-45 %V 6 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U http://www.numdam.org/item/AMBP_1999__6_1_33_0/ %G en %F AMBP_1999__6_1_33_0
Ludkovsky, S.V. Properties of quasi-invariant measures on topological groups and associated algebras. Annales mathématiques Blaise Pascal, Tome 6 (1999) no. 1, pp. 33-45. http://www.numdam.org/item/AMBP_1999__6_1_33_0/
[1] Lie groups and algebras (Moscow: Mir, 1976). | MR
.[2] Measures and differential equations in infinite-dimensional space (Kluwer: Dordrecht, The Netherlands, 1991). | Zbl
, .[3] Diffusion and quasi-invariant measures on infinite-dimensional Lie groups. Funct. Anal. and its Applications. 3 (1969), 156-158.
, .[4] General topology (Moscow: Mir,1986). | MR
.[5] Geometric measure theory(Berlin:Springer-Verlag, 1969). | MR | Zbl
.[6] Representations of *-algebras. locally compact groups, and Banach *-algebraic bundles (Acad. Pr.: Boston, 1988). | Zbl
, .[7] Abstract harmenic analysis. Second edition (Berlin: Springer-Verlag, 1979). | MR
and .[8] Irreducible Gaussian representations of the group of the interval and circle diffeomorphisms. J. Funct. Anal. 125(1994), 493-547. | MR | Zbl
.[9] Gaussian measures in Banach spaces (Springer, Berlin, 1975). | MR | Zbl
.[10] Measures on groups of diffeomorphisms of non-Archimedean Banach manifolds, Usp. Mat. Nauk. 51(1996), 169-170 (N° 2). | MR | Zbl
.[11] Measurability of repesentations of locally compact groups. Math. Sb. 186 1995, 83-92 (N°2). | MR | Zbl
.[12] Measures on groups of diffeomorphisms of non-Archimedean manifolds, representations of groups and their applications. Theoret. i Mathem. Phys., 1999.
.[13] Quasi-invariant measures on non-Archimedean semigroups of loops. Usp. Mat. Nauk, 53 (1998), 203-204 (N° 3). | MR | Zbl
.[14] Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional real manifold and induced irreducible unitary representations. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. Nuova Serie. 26 pages, is accepted for publication, 1999. | Zbl
.[15] Quasi-invariant measures on loop groups of Riemann manifolds. Dokl. Ross. Acad. Nauk, to appear.
.[16] Gaussian quasi-invariant measures on loop groups and semigroups of real manifolds and their representations. IHES, Bures, France, preprint IHES/M/97/95.
.[17] Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. IHES/M/98/36.
.[18] Quasi-invariant measures on groups of diffeomorphisms of Schwarz class of smoothness for real manifolds. IHES/M/97/96.
.[19] Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space. Intern. Centre for Theoret. Phys. Trieste, Italy. Preprint (http://www.ictp.trieste.it) IC/96/210, October 1996.
.[20] Quasi-invariant measures on a non-Archimedean group of diffeomorphisms and on a Banach manifold. ICTP. IC/96/215, October, 1996.
.[21] Quasi-invariant measures on groups of diffeomorphisms of real Banach manifolds. ICTP. IC/96/218, October, 1996.
.[22] Normed rings (Moscow: Nauka, 1968). | MR
.[23] Representations of the Virasoro algebra and affine algebras. in: Itogi Nauki i Tech. Ser. Sovr. Probl. Math. Fund. Napravl(Moscow: Nauka) 22(1988), 163-230. | MR | Zbl
.[24] About one measure quasi-invariant relative to an action of a diffeomorphisms group of a finite-dimensional manifold. Dokl. Akad. Nauk SSSR. 303(1988), 811-814. | MR | Zbl
.[25] Integration in the Hilbert space (Moscow: Nauka, 1975).
.