L’auteur généralise un théorème qu’il a déjà donné (J. de Math. 28 (949)). Envisageant un champ de probabilités au sens de Kolmogoroff, il élargit puis étudie la notion de discrépance, en introduisant la discrépance d’une variable aléatoire par rapport à une autre variable aléatoire ; elle se réduit au coefficient de corrélation si et sont des variables caractéristiques. Il introduit aussi la notion de suite de variables aléatoires “presque indépendantes deux à deux”, avec un coefficient dit module de dépendance. Il donne alors essentiellement pour une telle suite l’inégalité
où est valeur probable, , écart moyen.
@article{AIF_1949__1__43_0, author = {R\'enyi, Alfred}, title = {Sur un th\'eor\`eme g\'en\'eral de probabilit\'e}, journal = {Annales de l'Institut Fourier}, pages = {43--52}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {1}, year = {1949}, doi = {10.5802/aif.6}, mrnumber = {14,886d}, zbl = {0036.08703}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.6/} }
Rényi, Alfred. Sur un théorème général de probabilité. Annales de l'Institut Fourier, Tome 1 (1949), pp. 43-52. doi : 10.5802/aif.6. http://www.numdam.org/articles/10.5802/aif.6/
Cité par Sources :