We explain the notion of Lagrangian cobordism. A flexibility/rigidity dichotomy is illustrated by considering Lagrangian tori in . Towards the end, we present a recent construction by Cornea and the author [8], of monotone cobordisms that are not trivial in a suitable sense.
@article{TSG_2012-2014__31__43_0, author = {Charette, Fran\c{c}ois}, title = {What is a monotone {Lagrangian} cobordism?}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {43--53}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, year = {2012-2014}, doi = {10.5802/tsg.293}, language = {en}, url = {http://www.numdam.org/articles/10.5802/tsg.293/} }
TY - JOUR AU - Charette, François TI - What is a monotone Lagrangian cobordism? JO - Séminaire de théorie spectrale et géométrie PY - 2012-2014 SP - 43 EP - 53 VL - 31 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/tsg.293/ DO - 10.5802/tsg.293 LA - en ID - TSG_2012-2014__31__43_0 ER -
Charette, François. What is a monotone Lagrangian cobordism?. Séminaire de théorie spectrale et géométrie, Tome 31 (2012-2014), pp. 43-53. doi : 10.5802/tsg.293. http://www.numdam.org/articles/10.5802/tsg.293/
[1] Lagrange and Legendre cobordisms. I, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 3, p. 1-13, 96 | MR | Zbl
[2] Lagrange and Legendre cobordisms. II, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 4, p. 8-17, 95 | MR | Zbl
[3] Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1995, pp. xvi+516 Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition | MR | Zbl
[4] Cobordismes d’immersions lagrangiennes et legendriennes, Travaux en Cours [Works in Progress], 20, Hermann, Paris, 1987, pp. xvi+203 | MR | Zbl
[5] Mirror symmetry and -duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT, Volume 1 (2007), pp. 51-91 | MR | Zbl
[6] Lagrangian cobordism. I, J. Amer. Math. Soc., Volume 26 (2013) no. 2, pp. 295-340 | DOI | MR | Zbl
[7] Lagrangian cobordism and Fukaya categories, Geom. Funct. Anal., Volume 24 (2014) no. 6, pp. 1731-1830 | DOI | MR
[8] Categorification of Seidel’s representation (2014) (To appear in Israel Journal of Mathematics. Available at http://arxiv.org/abs/1307.7235)
[9] Lagrangian embeddings and Lagrangian cobordism, Topics in singularity theory (Amer. Math. Soc. Transl. Ser. 2), Volume 180, Amer. Math. Soc., Providence, RI, 1997, pp. 13-23 | MR | Zbl
[10] Notes on monotone Lagrangian twist tori, Electron. Res. Announc. Math. Sci., Volume 17 (2010), pp. 104-121 | DOI | MR | Zbl
[11] Cobordisme des solutions de relations différentielles, South Rhone seminar on geometry, I (Lyon, 1983) (Travaux en Cours), Hermann, Paris, 1984, pp. 17-31 | MR | Zbl
[12] Gromov convergence of pseudoholomorphic disks, J. Fixed Point Theory Appl., Volume 3 (2008) no. 2, pp. 215-271 | DOI | MR | Zbl
[13] Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985) no. 2, pp. 307-347 | DOI | EuDML | MR | Zbl
[14] Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9, Springer-Verlag, Berlin, 1986, pp. x+363 | DOI | MR | Zbl
[15] Lagrangian circle actions (2013) (Preprint. Available at http://arxiv.org/abs/1307.8196) | MR
[16] On the classification of Lagrange immersions, Duke Math. J., Volume 43 (1976) no. 2, pp. 217-224 | MR | Zbl
[17] Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998, pp. x+486 | MR | Zbl
[18] The surgery of Lagrange submanifolds, Geom. Funct. Anal., Volume 1 (1991) no. 2, pp. 198-210 | DOI | EuDML | MR | Zbl
[19] The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001, pp. xii+132 | DOI | MR | Zbl
Cité par Sources :