What is a monotone Lagrangian cobordism?
Séminaire de théorie spectrale et géométrie, Tome 31 (2012-2014), pp. 43-53.

We explain the notion of Lagrangian cobordism. A flexibility/rigidity dichotomy is illustrated by considering Lagrangian tori in 2 . Towards the end, we present a recent construction by Cornea and the author [8], of monotone cobordisms that are not trivial in a suitable sense.

DOI : 10.5802/tsg.293
Charette, François 1

1 Max Planck Institute for Mathematics Vivatsgasse 7 53111 Bonn (Germany)
@article{TSG_2012-2014__31__43_0,
     author = {Charette, Fran\c{c}ois},
     title = {What is a monotone {Lagrangian} cobordism?},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {43--53},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     year = {2012-2014},
     doi = {10.5802/tsg.293},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/tsg.293/}
}
TY  - JOUR
AU  - Charette, François
TI  - What is a monotone Lagrangian cobordism?
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2012-2014
SP  - 43
EP  - 53
VL  - 31
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/tsg.293/
DO  - 10.5802/tsg.293
LA  - en
ID  - TSG_2012-2014__31__43_0
ER  - 
%0 Journal Article
%A Charette, François
%T What is a monotone Lagrangian cobordism?
%J Séminaire de théorie spectrale et géométrie
%D 2012-2014
%P 43-53
%V 31
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/tsg.293/
%R 10.5802/tsg.293
%G en
%F TSG_2012-2014__31__43_0
Charette, François. What is a monotone Lagrangian cobordism?. Séminaire de théorie spectrale et géométrie, Tome 31 (2012-2014), pp. 43-53. doi : 10.5802/tsg.293. http://www.numdam.org/articles/10.5802/tsg.293/

[1] Arnol’d, V. I. Lagrange and Legendre cobordisms. I, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 3, p. 1-13, 96 | MR | Zbl

[2] Arnol’d, V. I. Lagrange and Legendre cobordisms. II, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 4, p. 8-17, 95 | MR | Zbl

[3] Arnol’d, V. I. Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1995, pp. xvi+516 Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition | MR | Zbl

[4] Audin, Michèle Cobordismes d’immersions lagrangiennes et legendriennes, Travaux en Cours [Works in Progress], 20, Hermann, Paris, 1987, pp. xvi+203 | MR | Zbl

[5] Auroux, Denis Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT, Volume 1 (2007), pp. 51-91 | MR | Zbl

[6] Biran, Paul; Cornea, Octav Lagrangian cobordism. I, J. Amer. Math. Soc., Volume 26 (2013) no. 2, pp. 295-340 | DOI | MR | Zbl

[7] Biran, Paul; Cornea, Octav Lagrangian cobordism and Fukaya categories, Geom. Funct. Anal., Volume 24 (2014) no. 6, pp. 1731-1830 | DOI | MR

[8] Charette, Francois; Cornea, Octav Categorification of Seidel’s representation (2014) (To appear in Israel Journal of Mathematics. Available at http://arxiv.org/abs/1307.7235)

[9] Chekanov, Yu. V. Lagrangian embeddings and Lagrangian cobordism, Topics in singularity theory (Amer. Math. Soc. Transl. Ser. 2), Volume 180, Amer. Math. Soc., Providence, RI, 1997, pp. 13-23 | MR | Zbl

[10] Chekanov, Yuri; Schlenk, Felix Notes on monotone Lagrangian twist tori, Electron. Res. Announc. Math. Sci., Volume 17 (2010), pp. 104-121 | DOI | MR | Zbl

[11] Eliashberg, J. Cobordisme des solutions de relations différentielles, South Rhone seminar on geometry, I (Lyon, 1983) (Travaux en Cours), Hermann, Paris, 1984, pp. 17-31 | MR | Zbl

[12] Frauenfelder, Urs Gromov convergence of pseudoholomorphic disks, J. Fixed Point Theory Appl., Volume 3 (2008) no. 2, pp. 215-271 | DOI | MR | Zbl

[13] Gromov, Mikhael Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985) no. 2, pp. 307-347 | DOI | EuDML | MR | Zbl

[14] Gromov, Mikhael Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9, Springer-Verlag, Berlin, 1986, pp. x+363 | DOI | MR | Zbl

[15] Hyvrier, Clement Lagrangian circle actions (2013) (Preprint. Available at http://arxiv.org/abs/1307.8196) | MR

[16] Lees, J. Alexander On the classification of Lagrange immersions, Duke Math. J., Volume 43 (1976) no. 2, pp. 217-224 | MR | Zbl

[17] McDuff, Dusa; Salamon, Dietmar Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998, pp. x+486 | MR | Zbl

[18] Polterovich, Leonid The surgery of Lagrange submanifolds, Geom. Funct. Anal., Volume 1 (1991) no. 2, pp. 198-210 | DOI | EuDML | MR | Zbl

[19] Polterovich, Leonid The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001, pp. xii+132 | DOI | MR | Zbl

Cité par Sources :