We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints, and its objective function is in form of
DOI : 10.5802/smai-jcm.30
Mots-clés : convex programming, splitting methods, augmented Lagrangian method, logarithmic-quadratic proximal, parallel computation, convergence rate
@article{SMAI-JCM_2018__4__81_0, author = {Li, Min and Yuan, Xiaoming}, title = {The augmented {Lagrangian} method with full {Jacobian} decomposition and logarithmic-quadratic proximal regularization for multiple-block separable convex programming}, journal = {The SMAI Journal of computational mathematics}, pages = {81--120}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {4}, year = {2018}, doi = {10.5802/smai-jcm.30}, mrnumber = {3774649}, zbl = {1418.90197}, language = {en}, url = {https://www.numdam.org/articles/10.5802/smai-jcm.30/} }
TY - JOUR AU - Li, Min AU - Yuan, Xiaoming TI - The augmented Lagrangian method with full Jacobian decomposition and logarithmic-quadratic proximal regularization for multiple-block separable convex programming JO - The SMAI Journal of computational mathematics PY - 2018 SP - 81 EP - 120 VL - 4 PB - Société de Mathématiques Appliquées et Industrielles UR - https://www.numdam.org/articles/10.5802/smai-jcm.30/ DO - 10.5802/smai-jcm.30 LA - en ID - SMAI-JCM_2018__4__81_0 ER -
%0 Journal Article %A Li, Min %A Yuan, Xiaoming %T The augmented Lagrangian method with full Jacobian decomposition and logarithmic-quadratic proximal regularization for multiple-block separable convex programming %J The SMAI Journal of computational mathematics %D 2018 %P 81-120 %V 4 %I Société de Mathématiques Appliquées et Industrielles %U https://www.numdam.org/articles/10.5802/smai-jcm.30/ %R 10.5802/smai-jcm.30 %G en %F SMAI-JCM_2018__4__81_0
Li, Min; Yuan, Xiaoming. The augmented Lagrangian method with full Jacobian decomposition and logarithmic-quadratic proximal regularization for multiple-block separable convex programming. The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 81-120. doi : 10.5802/smai-jcm.30. https://www.numdam.org/articles/10.5802/smai-jcm.30/
[1] Entropic proximal decomposition methods for convex programs and variational inequalities, Math. Program., Volume 91 (2001), pp. 33-47 | DOI | MR | Zbl
[2] Interior projection-like methods for monotone variational inequalities, Math. Program., Volume 104 (2005), pp. 39-68 | DOI | MR | Zbl
[3] A logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl., Volume 12 (1999), pp. 31-40 | DOI | MR | Zbl
[4] Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, 1982 | Zbl
[5] Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, Volume 3 (2010), pp. 1-122 | DOI | Zbl
[6] The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., Ser A, Volume 155 (2016), pp. 57-79 | DOI | MR | Zbl
[7] Further study on the convergence rate of alternating direction method of multipliers with logarithmic-quadratic proximal regularization, J. Optim. Theory Appli., Volume 166 (2015), pp. 906-929 | DOI | MR | Zbl
[8] Proximal splitting methods in signal processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Bauschke, H. H.; Burachik, R. S.; Combettes, P. L.; Elser, V.; Luke, D. R.; Wolkowicz, H., eds.), Springer, 2011, pp. 185-212 | DOI | Zbl
[9] Convergence rate analysis of several splitting schemes, Splitting Methods in Communication, Imaging, Science, and Engineering (Glowinski, R.; Osher, S. J.; Yin, W. T., eds.), Springer, 2017, pp. 115-163
[10] Parallel multi-block ADMM with
[11] On the basic theorem of complementarity, Math. Program., Volume 1 (1971), pp. 68-75 | DOI | MR | Zbl
[12] On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., Volume 55 (1992), pp. 293-318 | DOI | MR | Zbl
[13] Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results (2012) (RUTCOR Research Report RRR 32-2012)
[14] Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. I. Springer Series in Operations Research, Springer-Verlag, New York, 2003
[15] Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984 | DOI
[16] On alternating direction methods of multipliers: A historical perspective, Modeling, Simulation and Optimization for Science and Technology, Volume 34 of the series Computational Methods in Applied Sciences, Springer, 2014, pp. 59-82 | Zbl
[17] Approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires, R.A.I.R.O., Volume R2 (1975), pp. 41-76 | Numdam | Zbl
[18] Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, Philadelphia, PA, 1989 | DOI | Zbl
[19] Modified Lagrangian in convex programming and their generalizations, Math. Program. Studies, Volume 10 (1979), pp. 86-97 | DOI | MR | Zbl
[20] An augmented-Lagrangian-based parallel splitting method for separable convex programming with applications to image processing, Math. Comput., Volume 83 (2014), pp. 2263-2291 | DOI
[21] Deblurring Images: Matrices, Spectra, and Filtering, SIAM, Philadelphia, 2006 | Zbl
[22] On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming, SIAM J. Optim., Volume 25 (2015), pp. 2274-2312 | MR | Zbl
[23] A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM J. Optim., Volume 24 (2014), pp. 1101-1140 | MR | Zbl
[24] Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optim., Volume 22 (2012), pp. 313-340 | MR | Zbl
[25] On the proximal Jacobian decomposition of ALM for multiple-block separable convex minimization problems and its relationship to ADMM, J. Sci. Comput., Volume 66 (2016), pp. 1204-1217 | MR | Zbl
[26] On the O(
[27] On nonergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numer. Math., Volume 130 (2015), pp. 567-577
[28] On the linear convergence of the alternating direction method of multipliers, Math. Program., Volume 162 (2017), pp. 165-199 | DOI | MR
[29] Inexact alternating direction method of multipliers with logarithmic-quadratic proximal regularization, J. Optim. Theory Appli., Volume 159 (2013), pp. 412-436 | DOI | MR
[30] A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization, SIAM J. Optim., Volume 26 (2016), pp. 922-950 | DOI | MR | Zbl
[31] A strictly contractive Peaceman-Rachford splitting method with logarithmic-quadratic proximal regularization for convex programming, Math. Oper. Res., Volume 40 (2015), pp. 842-858 | DOI | MR | Zbl
[32] On the global linear convergence of the ADMM with multiblock variables, SIAM J. Optim., Volume 25 (2015), pp. 1478-1497 | DOI | MR
[33] On the sublinear convergence rate of multi-block ADMM, J. Oper. Res. Soc. China, Volume 3 (2015), pp. 251-274 | DOI | MR | Zbl
[34] Regularization d’inequations variationelles par approximations successives, Revue Francaise d’Informatique et de Recherche Opérationelle, Volume 4 (1970), pp. 154-159 | Numdam | MR | Zbl
[35] Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs (2017) (arXiv:1705.07229v1)
[36] Problem Complexity and Method Efficiency in Optimization, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, New York, 1983
[37] A method for unconstrained convex minimization problem with the rate of convergence O(
[38] Gradient methods for minimizing composite objective function, Math. Program., Ser. B, Volume 140 (2013), pp. 125-161 | DOI
[39] A survey on the continuous nonlinear resource allocation problem, European J. Oper. Res., Volume 185 (2008), pp. 1-46 | DOI | MR | Zbl
[40] Robust alignment by sparse and low-rank decomposition for linearly correlated images, IEEE Tran. Pattern Anal. Mach. Intel., Volume 34 (2012), pp. 2233-2246 | DOI
[41] A method for nonlinear constraints in minimization problems, Optimization (Fletcher, R., ed.), Academic Press, New York, 1969, pp. 283-298 | Zbl
[42] Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., Volume 1 (1976), pp. 97-116 | DOI | MR | Zbl
[43] Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., Volume 21 (2011), pp. 57-81 | DOI | MR | Zbl
[44] On the O
[45] Market mechanisms and mathematical programming, Econometrica, Volume 28 (1960), pp. 872-881 | DOI | MR | Zbl
[46] An LQP-based decomposition method for solving a class of variational inequalities, SIAM J. Optim, Volume 21 (2011), pp. 1309-1318 | DOI | MR
Cité par Sources :