For time independent symmetric hyperbolic systems with elliptic generators, gluing strictly dissipative boundary conditions at a multihedral corner yields a well posed boundary value problem. Uniqueness of solutions with square integrable boundary traces is proved using the Laplace transform and an regularity theorem.
@article{SLSEDP_2016-2017____A11_0, author = {Halpern, Laurence and Rauch, Jeffrey}, title = {Strictly dissipative boundary value problems at trihedral corners}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:11}, pages = {1--10}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2016-2017}, doi = {10.5802/slsedp.101}, language = {en}, url = {http://www.numdam.org/articles/10.5802/slsedp.101/} }
TY - JOUR AU - Halpern, Laurence AU - Rauch, Jeffrey TI - Strictly dissipative boundary value problems at trihedral corners JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:11 PY - 2016-2017 SP - 1 EP - 10 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/articles/10.5802/slsedp.101/ DO - 10.5802/slsedp.101 LA - en ID - SLSEDP_2016-2017____A11_0 ER -
%0 Journal Article %A Halpern, Laurence %A Rauch, Jeffrey %T Strictly dissipative boundary value problems at trihedral corners %J Séminaire Laurent Schwartz — EDP et applications %Z talk:11 %D 2016-2017 %P 1-10 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/articles/10.5802/slsedp.101/ %R 10.5802/slsedp.101 %G en %F SLSEDP_2016-2017____A11_0
Halpern, Laurence; Rauch, Jeffrey. Strictly dissipative boundary value problems at trihedral corners. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 11, 10 p. doi : 10.5802/slsedp.101. http://www.numdam.org/articles/10.5802/slsedp.101/
[1] K.O. Friedrichs, Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954) 345-392. | DOI | MR | Zbl
[2] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958) 333-418. | DOI | MR | Zbl
[3] P. Grisvard, Singularités des problèmes aux limites dans des polyèdres. (French) [Singularities of boundary value problems in polyhedra], Séminaire Goulaouic-Meyer-Schwartz, 1981/1982, exposé no. VIII, École Polytechnique, Palaiseau, 1982. | Numdam | Zbl
[4] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, Boston, MA, 1985 | DOI | Zbl
[5] L. Halpern and J.R. Rauch, Bérenger/Maxwell with discontinous absorptions: existence, perfection, and no loss, Séminaire Laurent Schwartz Année 2012-2013, exposé no. X, École Polytechnique, Palaiseau, 2014. | DOI | Zbl
[6] L. Halpern and J.R. Rauch, Hyperbolic boundary value problems with trihedral corners, Discrete Contin. Dyn. Syst. 36, no. 8, 4403-4450, 2016. | DOI | MR | Zbl
[7] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 427-455, 1960. | DOI | MR | Zbl
[8] G. Métivier and J. Rauch, Strictly dissipative nonuniqueness with corners in Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics, Springer-Verlag, 2017, to appear. | DOI | Zbl
Cité par Sources :