In this talk, we review some aspects of the derivation of fractional diffusion equations from kinetic equations and in particular some applications to the description of anomalous energy transport in FPU chains. This is based on joint works with N. Ben Abdallah, L. Cesbron, S. Merino, S. Mischler, C. Mouhot and M. Puel
@article{SLSEDP_2014-2015____A12_0, author = {Mellet, Antoine}, title = {Anomalous diffusion phenomena: {A} kinetic approach}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:12}, pages = {1--16}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2014-2015}, doi = {10.5802/slsedp.72}, language = {en}, url = {http://www.numdam.org/articles/10.5802/slsedp.72/} }
TY - JOUR AU - Mellet, Antoine TI - Anomalous diffusion phenomena: A kinetic approach JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:12 PY - 2014-2015 SP - 1 EP - 16 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/articles/10.5802/slsedp.72/ DO - 10.5802/slsedp.72 LA - en ID - SLSEDP_2014-2015____A12_0 ER -
%0 Journal Article %A Mellet, Antoine %T Anomalous diffusion phenomena: A kinetic approach %J Séminaire Laurent Schwartz — EDP et applications %Z talk:12 %D 2014-2015 %P 1-16 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/articles/10.5802/slsedp.72/ %R 10.5802/slsedp.72 %G en %F SLSEDP_2014-2015____A12_0
Mellet, Antoine. Anomalous diffusion phenomena: A kinetic approach. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 12, 16 p. doi : 10.5802/slsedp.72. http://www.numdam.org/articles/10.5802/slsedp.72/
[1] H. Babovsky, C. Bardos and T. Platkowski, Diffusion approximation for a Knudsen gas in a thin domain with accommodation on the boundary, Asymptotic Analysis, 3 (1991), pp. 265–289. | MR | Zbl
[2] C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. A. M. S., 284 (1984), pp. 617–649. | MR | Zbl
[3] Giada Basile, Cédric Bernardin, and Stefano Olla. Momentum conserving model with anomalous thermal conductivity in low dimensional systems. Physical review letters, 96(20):204303, 2006.
[4] Giada Basile, Cédric Bernardin, and Stefano Olla. Thermal conductivity for a momentum conservative model. Communications in Mathematical Physics, 287(1):67–98, 2009. | MR | Zbl
[5] Giada Basile, Stefano Olla, and Herbert Spohn. Energy transport in stochastically perturbed lattice dynamics. Archive for rational mechanics and analysis, 195(1):171–203, 2010. | MR | Zbl
[6] Naoufel Ben Abdallah, Antoine Mellet, and Marjolaine Puel. Anomalous diffusion limit for kinetic equations with degenerate collision frequency. Math. Models Methods Appl. Sci., 21(11):2249–2262, 2011. | MR
[7] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. RIMS Kyoto Univ., 15, 53–157 (1979). | MR | Zbl
[8] C. Bernardin, P. Gonçalves, and M. Jara. 3/4 Fractional superdiffusion of energy in a system of harmonic oscillators perturbed by a conservative noise. ArXiv e-prints, 2014.
[9] C. Börgers, C. Greengard, E. Thomann, The diffusion limit of free molecular flow in thin plane channels, SIAM J. Appl. Math., 52, # 4, (1992), 1057–1075. | MR | Zbl
[10] L. Cesbron, A. Mellet, K. Trivisa Anomalous transport of particles in Plasma physics, Applied Math. Letters, Appl. Math. Lett. 25 (2012), no. 12, 2344-2348. | MR | Zbl
[11] E.M. Conwell, High field electron transport in semiconductor, Solid Stat. Phys. 9 1967.
[12] P. Debye. Vorträge über die kinetische theorie der wärme. Teubner, 1914.
[13] P. Degond, T. Goudon, F. Poupaud, Diffusion limit for non homogeneous and non reversible processes, Indiana Univ. Math. J., 49, 1175-1198 (2000). | MR | Zbl
[14] I. Gentil, C. Imbert, The Lévy-Fokker-Planck equation: entropies and convergence to equilibrium, Asymptot. Anal. 59 (2008), 125-138. | MR | Zbl
[15] F. Golse, Anomalous diffusion limit for the Knudsen gas, Asymptotic Analysis, (1998). | MR | Zbl
[16] F. Golse, F. Poupaud, Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac, Asymptotic Analysis, 6, 135–160 (1992). | MR | Zbl
[17] Sabine Hittmeir and Sara Merino-Aceituno. Kinetic derivation of fractional stokes and stokes-fourier systems. 2014. | arXiv
[18] M. Jara, T. Komorowski, and S. Olla. Superdiffusion of energy in a chain of harmonic oscillators with noise. ArXiv e-prints, 2014.
[19] Milton Jara, Tomasz Komorowski, and Stefano Olla. Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab., 19(6):2270–2300, 2009. | MR | Zbl
[20] S. Lepri, R. Livi, and A. Politi. Studies of thermal conductivity in fermipastaulam-like lattices. Chaos, 15, 2005.
[21] Stefano Lepri, Roberto Livi, and Antonio Politi. Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett., 78, 1997.
[22] Stefano Lepri, Roberto Livi, and Antonio Politi. On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett., 43, 1998.
[23] Stefano Lepri, Roberto Livi, and Antonio Politi. Thermal conduction in classical low-dimensional lattices. Physics Reports, 377(1):1–80, 2003. | MR
[24] Stefano Lepri, Roberto Livi, and Antonio Politi. Universality of anomalous one-dimensional heat conductivity. Physical Review, 68, 2003.
[25] Stefano Lepri, Roberto Livi, and Antonio Politi. Studies of thermal conductivity in fermi–pasta–ulam-like lattices. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(1):015118, 2005.
[26] Jani Lukkarinen and Herbert Spohn. Anomalous energy transport in the fpu- chain. Communications on Pure and Applied Mathematics, 61(12):1753–1786, 2008. | MR | Zbl
[27] Antoine Mellet. Fractional diffusion limit for collisional kinetic equations: a moments method. Indiana Univ. Math. J., 59(4):1333–1360, 2010. | MR | Zbl
[28] A. Mellet, S. Merino Anomalous energy transport in FPU- chain, Journal of Statistical Physics. Accepted.
[29] Antoine Mellet, Stéphane Mischler, and Clément Mouhot. Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal., 199(2):493–525, 2011. | MR | Zbl
[30] Stefano Olla. Energy diffusion and superdiffusion in oscillators lattice networks. In New Trends in Mathematical Physics, pages 539–547. Springer, 2009. | Zbl
[31] Rudolf Peierls. Zur kinetischen theorie der wärmeleitung in kristallen. Annalen der Physik, 395 (1929).
[32] D.L. Rode, Low-field electron transport in: Semiconductors and semi-metals, Vol 10 (Academic Press, New York 1975), pp. 1-52.
[33] Herbert Spohn. Collisional invariants for the phonon boltzmann equation. Journal of statistical physics, 124(5):1131–1135, 2006. | MR | Zbl
[34] Herbert Spohn. The phonon boltzmann equation, properties and link to weakly anharmonic lattice dynamics. Journal of statistical physics, 124 (2006). | MR | Zbl
[35] Herbert Spohn. Nonlinear fluctuating hydrodynamics for anharmonic chains. Journal of Statistical Physics, 154(5):1191–1227, 2014. | MR | Zbl
Cité par Sources :