This text aims to describe results of the authors on the long time behavior of NLS on product spaces with a particular emphasis on the existence of solutions with growing higher Sobolev norms.
@article{SLSEDP_2013-2014____A16_0, author = {Hani, Zaher and Pausader, Benoit and Tzvetkov, Nikolay and Visciglia, Nicola}, title = {Growing {Sobolev} norms for the cubic defocusing {Schr\"odinger} equation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:16}, pages = {1--11}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2013-2014}, doi = {10.5802/slsedp.60}, language = {en}, url = {http://www.numdam.org/articles/10.5802/slsedp.60/} }
TY - JOUR AU - Hani, Zaher AU - Pausader, Benoit AU - Tzvetkov, Nikolay AU - Visciglia, Nicola TI - Growing Sobolev norms for the cubic defocusing Schrödinger equation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:16 PY - 2013-2014 SP - 1 EP - 11 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/articles/10.5802/slsedp.60/ DO - 10.5802/slsedp.60 LA - en ID - SLSEDP_2013-2014____A16_0 ER -
%0 Journal Article %A Hani, Zaher %A Pausader, Benoit %A Tzvetkov, Nikolay %A Visciglia, Nicola %T Growing Sobolev norms for the cubic defocusing Schrödinger equation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:16 %D 2013-2014 %P 1-11 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/articles/10.5802/slsedp.60/ %R 10.5802/slsedp.60 %G en %F SLSEDP_2013-2014____A16_0
Hani, Zaher; Pausader, Benoit; Tzvetkov, Nikolay; Visciglia, Nicola. Growing Sobolev norms for the cubic defocusing Schrödinger equation. Séminaire Laurent Schwartz — EDP et applications (2013-2014), Exposé no. 16, 11 p. doi : 10.5802/slsedp.60. http://www.numdam.org/articles/10.5802/slsedp.60/
[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3, (1993), 107–156. | MR | Zbl
[2] J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Notices 1996, no. 6, 277–304. | MR | Zbl
[3] J. Bourgain, Problems in Hamiltonian PDE’s, Geom. Funct. Anal., 2000. (Special volume, Part I), 32–56. | MR | Zbl
[4] J. Bourgain, Refinements of Strichartz inequality and applications to D-NLS with critical nonlinearity, Int. Math. Res. Not., (1998), 253-283. | MR | Zbl
[5] J. Bourgain, Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Israel J. Math., 193 (2013), no. 1, 441–458. | MR | Zbl
[6] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649–669. | MR | Zbl
[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181 (2010), no. 1, 39–113. | MR | Zbl
[8] Z. Hani, Long-time strong instability and unbounded orbits for some periodic nonlinear Schödinger equations, Arch. Rat. Mech. Anal., to appear (). | DOI | MR
[9] Z. Hani, B. Pausader. N. Tzvetkov. N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, Preprint 2013.
[10] S. Herr, D. Tataru, and N. Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in and applications, J. Ang. Math., to appear, . | DOI
[11] M. Guardia and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc, to appear.
[12] J. Kato and F. Pusateri, A new proof of long range scattering for critical nonlinear Schrödinger equations, J. Diff. Int. Equ., Vol. 24, no. 9–10 (2011). | MR | Zbl
[13] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys., 139 (1991), pp. 479–493. | MR | Zbl
Cité par Sources :