@article{SAF_1979-1980____A20_0, author = {Szarek, S. J.}, title = {Bases in the spaces $C$ and $L^1$}, journal = {S\'eminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")}, note = {talk:23}, pages = {1--8}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1979-1980}, zbl = {0442.46010}, language = {en}, url = {http://www.numdam.org/item/SAF_1979-1980____A20_0/} }
TY - JOUR AU - Szarek, S. J. TI - Bases in the spaces $C$ and $L^1$ JO - Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") N1 - talk:23 PY - 1979-1980 SP - 1 EP - 8 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SAF_1979-1980____A20_0/ LA - en ID - SAF_1979-1980____A20_0 ER -
Szarek, S. J. Bases in the spaces $C$ and $L^1$. Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980), Exposé no. 23, 8 p. http://www.numdam.org/item/SAF_1979-1980____A20_0/
[1] A Fourier series divergent on a set of positive measure for arbitrary uniformly bounded orthonormal system, Math. Sbor. 98 (140) (1975), 436-449 (Russian). | MR | Zbl
:[2] Remarks on Lebesgue functions of orthonormal systems, Math. Sbor. 106 (148) (1978), 380-385 (Russian). | MR | Zbl
:[3] On systems of convergence in C and bases in L, Math. Zam. 26 (1979), 183-200 (Russian). | MR | Zbl
,[4] Estimation of Lebesgue functions of biorthogonal systems with application to bases, Studia Math. 66 (2). | MR | Zbl
, :[5] Fourier series with respect to general orthogonal systems, Springer-Verlag 1975. | MR | Zbl
,[6] On a result of Olevskiĭ: a uniformly bounded orthonormal sequence is not a basis for C[0,1], Séminaire Maurey-Schwartz 1973-74, Exposé No 21. | Numdam | Zbl
:[7] Bases in Banach spaces I, Springer-Verlag 1970. | MR | Zbl
:[8] Non existence of Besselian basis in C(S), J. Funct. Anal. 36 (1980). | MR | Zbl
,[9] Bases and biorthogonal systems in the spaces C and L1, Arkiv f. Matematik 17 (2) (1979), 255-271. | MR | Zbl
: