@article{RSMUP_1997__97__7_0, author = {Smith, Howard and Wiegold, James}, title = {Groups which are isomorphic to their nonabelian subgroups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {7--16}, publisher = {Seminario Matematico of the University of Padua}, volume = {97}, year = {1997}, mrnumber = {1476158}, zbl = {0887.20012}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1997__97__7_0/} }
TY - JOUR AU - Smith, Howard AU - Wiegold, James TI - Groups which are isomorphic to their nonabelian subgroups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1997 SP - 7 EP - 16 VL - 97 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1997__97__7_0/ LA - en ID - RSMUP_1997__97__7_0 ER -
%0 Journal Article %A Smith, Howard %A Wiegold, James %T Groups which are isomorphic to their nonabelian subgroups %J Rendiconti del Seminario Matematico della Università di Padova %D 1997 %P 7-16 %V 97 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1997__97__7_0/ %G en %F RSMUP_1997__97__7_0
Smith, Howard; Wiegold, James. Groups which are isomorphic to their nonabelian subgroups. Rendiconti del Seminario Matematico della Università di Padova, Tome 97 (1997), pp. 7-16. http://www.numdam.org/item/RSMUP_1997__97__7_0/
[1] Groups with restricted non-normal subgroups, Math. Z., 176 (1981), pp. 199-221. | MR | Zbl
- ,[2] On finitely generated soluble groups with no large wreath product sections, Proc. London Math. Soc. (3), 49 (1984), pp. 155-169. | MR | Zbl
,[3] H. SMITH - J. WIEGOLD, A problem on normal subgroups, J. Pure and Applied Algebra, 88 (1993), pp. 169-171. | MR | Zbl
-[4] Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4 (1903), pp. 398-404. | JFM | MR
- ,[5] M. B. NATHANSON (Editor), Number Theory, Carbondale 1979, Lecture Notes in Math., 751, Springer (1979). | MR | Zbl
[6] OL'SHANSKII, Geometry of Defining Relations in Groups, Nauka, Moscow (1989). | MR | Zbl
[7] Polycyclic Groups, Cambridge Tracts in Mathematics, 82, C.U.P. (1983). | MR | Zbl
,[8] On homomorphic images of locally graded groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 53-60. | Numdam | MR | Zbl
,[9] Algebraic Number Theory, second edition, Chap-man and Hall (1987). | MR | Zbl
- ,