Given a tree
Mots-clés : bounded graph coloring, tree, dynamic programming
@article{RO_2009__43_1_27_0, author = {Bentz, C. and Picouleau, C.}, title = {Locally bounded $k$-colorings of trees}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {27--33}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/ro/2009003}, mrnumber = {2502323}, zbl = {1158.05317}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ro/2009003/} }
TY - JOUR AU - Bentz, C. AU - Picouleau, C. TI - Locally bounded $k$-colorings of trees JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2009 SP - 27 EP - 33 VL - 43 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2009003/ DO - 10.1051/ro/2009003 LA - en ID - RO_2009__43_1_27_0 ER -
Bentz, C.; Picouleau, C. Locally bounded $k$-colorings of trees. RAIRO - Operations Research - Recherche Opérationnelle, Tome 43 (2009) no. 1, pp. 27-33. doi : 10.1051/ro/2009003. https://www.numdam.org/articles/10.1051/ro/2009003/
[1] Mutual exclusion scheduling. Theor. Comput. Sci. 162 (1996) 225-243. | MR | Zbl
and ,[2] Graphes. Gauthier-Villars, Paris (1983). | MR | Zbl
,[3] Equitable colorings of bounded treewidth graphs. Theor. Comput. Sci. 349 (2005) 22-30. | MR | Zbl
and ,[4] Restrictions of graph partition problems. Part I. Theor. Comput. Sci. 148 (1995) 93-109. | MR | Zbl
and ,[5] Equitable and proportional coloring of trees. J. Comb. Theory, Ser. B 34 (1983) 177-186. | MR | Zbl
and ,
[6] A note on the
[7] Equitable Coloring of Trees. J. Comb. Theory, Ser. B 61 (1994) 83-87. | MR | Zbl
and ,[8] Introduction to Algorithms. The MIT press, (2001). | MR | Zbl
, , and ,[9] Feasible edge colorings of trees with cardinality constraints. Discrete Math. 222 (2000) 61-72. | MR | Zbl
, , and ,[10] Computers and Intractability, a Guide to the Theory of NP-Completeness. Ed. Freeman New York (1979). | MR | Zbl
and ,[11] Complexity of list coloring problems with a fixed total number of colors. Discrete Appl. Math. 117 (2002) 65-79. | MR | Zbl
, and ,[12] Proof of a conjecture of P. Erdős. Combinatorial Theory and its Applications, Vol. II, North-Holland, Amsterdam (1970) 601-623. | MR | Zbl
and ,[13] Bounded vertex colorings of graphs. Discrete Math. 111 (1993) 305-312. | MR | Zbl
, and ,[14] Bounded vertex coloring of trees. Discrete Math. 232 (2001) 145-151. | MR | Zbl
and ,Cité par Sources :