In on-line computation, the instance of the problem dealt is not entirely known from the beginning of the solution process, but it is revealed step-by-step. In this paper we deal with on-line independent set. On-line models studied until now for this problem suppose that the input graph is initially empty and revealed either vertex-by-vertex, or cluster-by-cluster. Here we present a new on-line model quite different to the ones already studied. It assumes that a superset of the final graph is initially present (in our case the complete graph on the order
Mots-clés : approximation algorithms, competitive ratio, maximum independent set, on-line algorithms
@article{RO_2006__40_2_129_0, author = {Escoffier, Bruno and Paschos, Vangelis Th.}, title = {On-line models and algorithms for max independent set}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {129--142}, publisher = {EDP-Sciences}, volume = {40}, number = {2}, year = {2006}, doi = {10.1051/ro:2006014}, mrnumber = {2272683}, zbl = {1110.68170}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ro:2006014/} }
TY - JOUR AU - Escoffier, Bruno AU - Paschos, Vangelis Th. TI - On-line models and algorithms for max independent set JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2006 SP - 129 EP - 142 VL - 40 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro:2006014/ DO - 10.1051/ro:2006014 LA - en ID - RO_2006__40_2_129_0 ER -
%0 Journal Article %A Escoffier, Bruno %A Paschos, Vangelis Th. %T On-line models and algorithms for max independent set %J RAIRO - Operations Research - Recherche Opérationnelle %D 2006 %P 129-142 %V 40 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro:2006014/ %R 10.1051/ro:2006014 %G en %F RO_2006__40_2_129_0
Escoffier, Bruno; Paschos, Vangelis Th. On-line models and algorithms for max independent set. RAIRO - Operations Research - Recherche Opérationnelle, Tome 40 (2006) no. 2, pp. 129-142. doi : 10.1051/ro:2006014. https://www.numdam.org/articles/10.1051/ro:2006014/
[1] Algorithms for the on-line traveling salesman problem. Algorithmica 29 (2001) 560-581. | Zbl
, , , and ,[2] Graphs and hypergraphs. North Holland, Amsterdam (1973). | MR | Zbl
,[3] On-line maximum-order induced hereditary subgraph problems, in SOFSEM 2000-Theory and Practice of Informatics, edited by V. Hlaváč, K.G. Jeffery and J. Wiedermann. Springer-Verlag, Lect. Notes Comput. Sci. 1963 (2000) 326-334. | Zbl
, and ,[4] Improved approximations for maximum independent set via approximation chains. Appl. Math. Lett. 10 (1997) 105-110. | Zbl
, ,[5] Improved approximations for weighted and unweighted graph problems. Theor. Comput. Syst. To appear. | MR | Zbl
, ,[6] Problème on-line du stable de cardinalité maximale. Mémoire de DEA (2002).
,[7] Approximations via partitioning. JAIST Research Report IS-RR-95-0003F, Japan Advanced Institute of Science and Technology, Japan (1995).
,[8] Approximations of weighted independent set and hereditary subset problems. J. Graph Algorithms Appli. 4 (2000) 1-16. | Zbl
,[9] Online independent sets. Theoret. Comput. Sci. 289 (2002) 953-962. | Zbl
, , and ,[10] Approximation algorithms for NP-hard problems. PWS, Boston (1997).
, editor,[11] A survey about how optimal solutions to some covering and packing problems can be approximated. ACM Comput. Surveys 29 (1997) 171-209.
,- Advice Complexity of Maximum Independent set in Sparse and Bipartite Graphs, Theory of Computing Systems, Volume 56 (2015) no. 1, p. 197 | DOI:10.1007/s00224-014-9592-2
- Independent Set with Advice: The Impact of Graph Knowledge, Approximation and Online Algorithms, Volume 7846 (2013), p. 2 | DOI:10.1007/978-3-642-38016-7_2
- , ICM 2011 Proceeding (2011), p. 1 | DOI:10.1109/icm.2011.6177401
Cité par 3 documents. Sources : Crossref