Coercivity properties and well-posedness in vector optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 3, pp. 195-208.

This paper studies the issue of well-posedness for vector optimization. It is shown that coercivity implies well-posedness without any convexity assumptions on problem data. For convex vector optimization problems, solution sets of such problems are non-convex in general, but they are highly structured. By exploring such structures carefully via convex analysis, we are able to obtain a number of positive results, including a criterion for well-posedness in terms of that of associated scalar problems. In particular we show that a well-known relative interiority condition can be used as a sufficient condition for well-posedness in convex vector optimization.

DOI : 10.1051/ro:2003021
Mots-clés : vector optimization, weakly efficient solution, well posedness, level-coercivity, error bounds, relative interior
@article{RO_2003__37_3_195_0,
     author = {Deng, Sien},
     title = {Coercivity properties and well-posedness in vector optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {195--208},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {3},
     year = {2003},
     doi = {10.1051/ro:2003021},
     mrnumber = {2034539},
     zbl = {1070.90095},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro:2003021/}
}
TY  - JOUR
AU  - Deng, Sien
TI  - Coercivity properties and well-posedness in vector optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2003
SP  - 195
EP  - 208
VL  - 37
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro:2003021/
DO  - 10.1051/ro:2003021
LA  - en
ID  - RO_2003__37_3_195_0
ER  - 
%0 Journal Article
%A Deng, Sien
%T Coercivity properties and well-posedness in vector optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2003
%P 195-208
%V 37
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro:2003021/
%R 10.1051/ro:2003021
%G en
%F RO_2003__37_3_195_0
Deng, Sien. Coercivity properties and well-posedness in vector optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 3, pp. 195-208. doi : 10.1051/ro:2003021. https://www.numdam.org/articles/10.1051/ro:2003021/

[1] A. Auslender, How to deal with the unbounded in optimization: Theory and algorithms. Math. Program. B 79 (1997) 3-18. | MR | Zbl

[2] A. Auslender, Existence of optimal solutions and duality results under weak conditions. Math. Program. 88 (2000) 45-59. | MR | Zbl

[3] A. Auslender, R. Cominetti and J.-P. Crouzeix, Convex functions with unbounded level sets and applications to duality theory. SIAM J. Optim. 3 (1993) 669-695. | MR | Zbl

[4] J.M. Borwein and A.S. Lewis, Partially finite convex programming, Part I: Quasi relative interiors and duality theory. Math. Program. B 57 (1992) 15-48. | MR | Zbl

[5] B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-linear Parametric Optimization. Birhauser-Verlag (1983). | MR | Zbl

[6] S. Deng, Characterizations of the nonemptiness and compactness of solution sets in convex vector optimization. J. Optim. Theory Appl. 96 (1998) 123-131. | MR | Zbl

[7] S. Deng, On approximate solutions in convex vector optimization. SIAM J. Control Optim. 35 (1997) 2128-2136. | MR | Zbl

[8] S. Deng, Well-posed problems and error bounds in optimization, in Reformulation: Non-smooth, Piecewise Smooth, Semi-smooth and Smoothing Methods, edited by Fukushima and Qi. Kluwer (1999). | MR | Zbl

[9] D. Dentcheva and S. Helbig, On variational principles, level sets, well-posedness, and ϵ-solutions in vector optimization. J. Optim. Theory Appl. 89 (1996) 325-349. | MR | Zbl

[10] L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems. Springer-Verlag, Lecture Notes in Math. 1543 (1993). | MR | Zbl

[11] F. Flores-Bazan and F. Flores-Bazan, Vector equilibrium problems under recession analysis. preprint, 2001. | MR

[12] X.X. Huang and X.Q. Yang, Characterizations of nonemptiness and compactness of the set of weakly efficient solutions for convex vector optimization and applications. J. Math. Anal. Appl. 264 (2001) 270-287. | MR | Zbl

[13] X.X. Huang, Pointwise well-posedness of perturbed vector optimization problems in a vector-valued variational principle. J. Optim. Theory Appl. 108 (2001) 671-686. | MR | Zbl

[14] A.D. Ioffe, R.E. Lucchetti and J.P. Revalski, A variational principle for problems with functional constraints. SIAM J. Optim. 12 (2001) 461-478. | MR | Zbl

[15] Z.-Q. Luo and S.Z. Zhang, On extensions of Frank-Wolfe theorem. J. Comput. Optim. Appl. 13 (1999) 87-110. | MR | Zbl

[16] D.T. Luc, Theory of Vector Optimization. Springer-Verlag (1989). | MR

[17] R. Lucchetti, Well-posedness, towards vector optimization. Springer-Verlag, Lecture Notes Economy and Math. Syst. 294 (1986).

[18] R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). | MR | Zbl

[19] R.T. Rockafellar, Conjugate Duality and Optimization. SIAM (1974). | MR | Zbl

[20] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag (1998). | MR | Zbl

[21] Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multi-objective Optimization. Academic Press (1985). | MR | Zbl

[22] T. Zolezzi, Well-posedness and optimization under perturbations. Ann. Oper. Res. 101 (2001) 351-361. | MR | Zbl

  • Zhou, Zhiang; Feng, Kehao; Ansari, Qamrul Hasan Well-Posedness of Set Optimization Problems with Set Order Defined by Minkowski Difference, Journal of Optimization Theory and Applications, Volume 204 (2025) no. 2 | DOI:10.1007/s10957-025-02608-5
  • Kim, Do Sang; Mordukhovich, Boris S.; Phạm, Tiến-Sơn; Van Tuyen, Nguyen Existence of efficient and properly efficient solutions to problems of constrained vector optimization, Mathematical Programming, Volume 190 (2021) no. 1-2, p. 259 | DOI:10.1007/s10107-020-01532-y
  • Rahali, Noureddine; Belloufi, Mohammed; Benzine, Rachid A new conjugate gradient method for acceleration of gradient descent algorithms, Moroccan Journal of Pure and Applied Analysis, Volume 7 (2021) no. 1, p. 1 | DOI:10.2478/mjpaa-2021-0001
  • Hadjisavvas, Nicolas; Lara, Felipe; Martínez-Legaz, Juan Enrique A Quasiconvex Asymptotic Function with Applications in Optimization, Journal of Optimization Theory and Applications, Volume 180 (2019) no. 1, p. 170 | DOI:10.1007/s10957-018-1317-2
  • Iusem, Alfredo; Lara, Felipe Optimality Conditions for Vector Equilibrium Problems with Applications, Journal of Optimization Theory and Applications, Volume 180 (2019) no. 1, p. 187 | DOI:10.1007/s10957-018-1321-6
  • Flores-Bazán, Fabián; Echegaray, William; Flores-Bazán, Fernando; Ocaña, Eladio Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap, Journal of Global Optimization, Volume 69 (2017) no. 4, p. 823 | DOI:10.1007/s10898-017-0542-9
  • Lara, F. Generalized asymptotic functions in nonconvex multiobjective optimization problems, Optimization, Volume 66 (2017) no. 8, p. 1259 | DOI:10.1080/02331934.2016.1235162
  • Flores-Bazán, F.; Hadjisavvas, N.; Lara, F.; Montenegro, I. First- and Second-Order Asymptotic Analysis with Applications in Quasiconvex Optimization, Journal of Optimization Theory and Applications, Volume 170 (2016) no. 2, p. 372 | DOI:10.1007/s10957-016-0938-6
  • Peng, Jian-Wen; Yang, Xin-Min Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems, Journal of Industrial Management Optimization, Volume 11 (2015) no. 3, p. 701 | DOI:10.3934/jimo.2015.11.701
  • Lalitha, C. S.; Chatterjee, Prashanto Levitin–Polyak well-posedness for constrained quasiconvex vector optimization problems, Journal of Global Optimization, Volume 59 (2014) no. 1, p. 191 | DOI:10.1007/s10898-013-0103-9
  • Kettner, Laura J.; Deng, Sien On Well-Posedness and Hausdorff Convergence of Solution Sets of Vector Optimization Problems, Journal of Optimization Theory and Applications, Volume 153 (2012) no. 3, p. 619 | DOI:10.1007/s10957-011-9947-7
  • Huang, X.X.; Yang, X.Q. Further study on the Levitin–Polyak well-posedness of constrained convex vector optimization problems, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 3, p. 1341 | DOI:10.1016/j.na.2011.01.012
  • Flores-Bazán, Fabián; Flores-Bazán, Fernando; Vera, Cristián Gordan-Type Alternative Theorems and Vector Optimization Revisited, Recent Developments in Vector Optimization, Volume 1 (2012), p. 29 | DOI:10.1007/978-3-642-21114-0_2
  • Huang, Xue-Xiang Levitin–Polyak Type Well-Posedness in Constrained Optimization, Recent Developments in Vector Optimization, Volume 1 (2012), p. 329 | DOI:10.1007/978-3-642-21114-0_10
  • Zhang, J; Jiang, B; Huang, XX Levitin-Polyak Well-Posedness in Vector Quasivariational Inequality Problems with Functional Constraints, Fixed Point Theory and Applications, Volume 2010 (2010) no. 1 | DOI:10.1155/2010/984074
  • Deng, S. Boundedness and Nonemptiness of the Efficient Solution Sets in Multiobjective Optimization, Journal of Optimization Theory and Applications, Volume 144 (2010) no. 1, p. 29 | DOI:10.1007/s10957-009-9589-1
  • Huang, X. X.; Yang, X. Q. Levitin–Polyak Well-Posedness of Vector Variational Inequality Problems with Functional Constraints, Numerical Functional Analysis and Optimization, Volume 31 (2010) no. 4, p. 440 | DOI:10.1080/01630563.2010.485296
  • Peng, Jian-Wen; Wu, Soon-Yi The generalized Tykhonov well-posedness for system of vector quasi-equilibrium problems, Optimization Letters, Volume 4 (2010) no. 4, p. 501 | DOI:10.1007/s11590-010-0179-9
  • Huang, X. X.; Yang, X. Q.; Zhu, D. L. Levitin–Polyak well-posedness of variational inequality problems with functional constraints, Journal of Global Optimization, Volume 44 (2009) no. 2, p. 159 | DOI:10.1007/s10898-008-9310-1
  • Jiang, B.; Zhang, J.; Huang, X.X. Levitin–Polyak well-posedness of generalized quasivariational inequalities with functional constraints, Nonlinear Analysis: Theory, Methods Applications, Volume 70 (2009) no. 4, p. 1492 | DOI:10.1016/j.na.2008.02.029
  • Flores-Bazán, Fabián; Vera, Cristián Weak efficiency in multiobjective quasiconvex optimization on the real-line without derivatives, Optimization, Volume 58 (2009) no. 1, p. 77 | DOI:10.1080/02331930701761524
  • Flores-Bazán, Fabián; Hadjisavvas, Nicolas; Vera, Cristián An Optimal Alternative Theorem and Applications to Mathematical Programming, Journal of Global Optimization, Volume 37 (2007) no. 2, p. 229 | DOI:10.1007/s10898-006-9046-8
  • Huang, X. X.; Yang, X. Q. Levitin–Polyak well-posedness of constrained vector optimization problems, Journal of Global Optimization, Volume 37 (2007) no. 2, p. 287 | DOI:10.1007/s10898-006-9050-z
  • Huang, X. X.; Yang, X. Q. Generalized Levitin–Polyak Well-Posedness in Constrained Optimization, SIAM Journal on Optimization, Volume 17 (2006) no. 1, p. 243 | DOI:10.1137/040614943

Cité par 24 documents. Sources : Crossref