This paper presents a unified approach for bottleneck capacity expansion problems. In the bottleneck capacity expansion problem, BCEP, we are given a finite ground set
Mots-clés : capacity expansion, bottleneck problem, strongly polynomial algorithm, algebraic optimization
@article{RO_2001__35_1_1_0, author = {Burkard, Rainer E. and Klinz, Bettina and Zhang, Jianzhong}, title = {Bottleneck capacity expansion problems with general budget constraints}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1--20}, publisher = {EDP-Sciences}, volume = {35}, number = {1}, year = {2001}, mrnumber = {1841811}, zbl = {1078.90585}, language = {en}, url = {https://www.numdam.org/item/RO_2001__35_1_1_0/} }
TY - JOUR AU - Burkard, Rainer E. AU - Klinz, Bettina AU - Zhang, Jianzhong TI - Bottleneck capacity expansion problems with general budget constraints JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2001 SP - 1 EP - 20 VL - 35 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/item/RO_2001__35_1_1_0/ LA - en ID - RO_2001__35_1_1_0 ER -
%0 Journal Article %A Burkard, Rainer E. %A Klinz, Bettina %A Zhang, Jianzhong %T Bottleneck capacity expansion problems with general budget constraints %J RAIRO - Operations Research - Recherche Opérationnelle %D 2001 %P 1-20 %V 35 %N 1 %I EDP-Sciences %U https://www.numdam.org/item/RO_2001__35_1_1_0/ %G en %F RO_2001__35_1_1_0
Burkard, Rainer E.; Klinz, Bettina; Zhang, Jianzhong. Bottleneck capacity expansion problems with general budget constraints. RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 1, pp. 1-20. https://www.numdam.org/item/RO_2001__35_1_1_0/
[1] A capacity scaling algorithm for the constrained maximum flow problem. Networks 25 (1995) 89-98. | Zbl
and ,[2] The quickest flow problem. Z. Oper. Res. (ZOR) 37 (1993) 31-58. | MR | Zbl
, and ,[3] An algebraic approach to assignment problems. Math. Programming 12 (1977) 318-327. | MR | Zbl
, and ,[4] Combinatorial optimization in linearly ordered semimodules: A survey, in Modern Applied Mathematics, edited by B. Korte. North Holland, Amsterdam (1982) 392-436. | MR | Zbl
and ,[5] Modifying edges of a network to obtain short subgraphs. Theoret. Comput. Sci. 203 (1998) 91-121. | MR | Zbl
, , , and ,[6] Increasing the weight of minimum spanning trees. J. Algorithms 33 (1999) 244-266. | MR | Zbl
and ,[7] Algorithms for robustness in matroid optimization, in Proc. of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (1997) 659-668. | MR
and ,[8] Maximizing the minimum source-sink path subject to a budget constraint. Math. Programming 13 (1977) 116-118. | MR | Zbl
and ,[9] On budgeted optimization problems. Private Communication (2000).
,[10] Approximation algorithms for certain network improvement problems. J. Combin. Optim. 2 (1998) 257-288. | MR | Zbl
, , , and ,[11] Combinatorial optimization with rational objective functions. Math. Oper. Res. 4 (1979) 414-424. | MR | Zbl
,[12] Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30 (1983) 852-865. | MR | Zbl
,[13] The network inhibition problem1993) 776-785.
,[14] Parametric flows, weighted means of cuts, and fractional combinatorial optimization, in Complexity in Numerical Optimization, edited by P.M. Pardalos. World Scientific Publ. (1993) 351-386. | MR | Zbl
,[15] A class of bottleneck expansion problems. Comput. Oper. Res. 28 (2001) 505-519. | Zbl
, and ,[16] Linear and Combinatorial Optimization in Ordered Algebraic Structures. North-Holland, Amsterdam, Ann. Discrete Math. 10 (1981). | MR | Zbl
,