A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 120-134.

We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi [Stoch. Proc. Appl. 84 (1999) 313-342]. The proof uses a new variant of the Lindeberg method: the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applications in statistics which show that our central limit theorem is tailor-made for statistics of different type.

DOI : 10.1051/ps/2011144
Classification : 60F05, 62F40, 62G07, 62M15
Mots-clés : central limit theorem, Lindeberg method, weak dependence, bootstrap
@article{PS_2013__17__120_0,
     author = {Neumann, Michael H.},
     title = {A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics},
     journal = {ESAIM: Probability and Statistics},
     pages = {120--134},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011144},
     mrnumber = {3021312},
     zbl = {1291.60047},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2011144/}
}
TY  - JOUR
AU  - Neumann, Michael H.
TI  - A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 120
EP  - 134
VL  - 17
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2011144/
DO  - 10.1051/ps/2011144
LA  - en
ID  - PS_2013__17__120_0
ER  - 
%0 Journal Article
%A Neumann, Michael H.
%T A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics
%J ESAIM: Probability and Statistics
%D 2013
%P 120-134
%V 17
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2011144/
%R 10.1051/ps/2011144
%G en
%F PS_2013__17__120_0
Neumann, Michael H. A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 120-134. doi : 10.1051/ps/2011144. https://www.numdam.org/articles/10.1051/ps/2011144/

[1] D.W.K. Andrews, Non-strong mixing autoregressive processes, J. Appl. Probab. 21 (1984) 930-934. | MR | Zbl

[2] J.M. Bardet, P. Doukhan, G. Lang and N. Ragache, Dependent Lindeberg central limit theorem and some applications. ESAIM : PS 12 (2008) 154-172. | Numdam | MR | Zbl

[3] P.J. Bickel and P. Bühlmann, A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli 5 (1999) 413-446. | MR | Zbl

[4] P. Billingsley, The Lindeberg-Lévy theorem for martingales. Proc. Amer. Math. Soc. 12 (1961) 788-792. | MR | Zbl

[5] P. Billingsley, Convergence of Probability Measures. Wiley, New York (1968). | MR | Zbl

[6] C. Coulon-Prieur and P. Doukhan, A triangular central limit theorem under a new weak dependence condition. Stat. Probab. Lett. 47 (2000) 61-68. | MR | Zbl

[7] R. Dahlhaus, Fitting time series models to nonstationary processes. Ann. Stat. 25 (1997) 1-37. | MR | Zbl

[8] R. Dahlhaus, Local inference for locally stationary time series based on the empirical spectral measure. J. Econ. 151 (2009) 101-112. | MR

[9] J. Dedecker, A central limit theorem for stationary random fields. Probab. Theory Relat. Fields 110 (1998) 397-426. | MR | Zbl

[10] J. Dedecker and F. Merlevède, Necessary and sufficient conditions for the conditional central limit theorem. Ann. Probab. 30 (2002) 1044-1081. | MR | Zbl

[11] J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes. Ann. Inst. Henri Poincaré Série B 36 (2000) 1-34. | Numdam | MR | Zbl

[12] J. Dedecker, P. Doukhan, G. Lang, J.R. León, S. Louhichi and C. Prieur, Weak Dependence : With Examples and Applications. Springer-Verlag. Lect. Notes Stat. 190 (2007). | MR | Zbl

[13] P. Doukhan, Mixing : Properties and Examples. Springer-Verlag. Lect. Notes Stat. 85 (1994). | MR | Zbl

[14] P. Doukhan and S. Louhichi, A new weak dependence condition and application to moment inequalities. Stoch. Proc. Appl. 84 (1999) 313-342. | MR | Zbl

[15] I.A. Ibragimov, Some limit theorems for stationary processes. Teor. Veroyatn. Primen. 7 (1962) 361-392 (in Russian). [English translation : Theory Probab. Appl. 7 (1962) 349-382]. | MR | Zbl

[16] I.A. Ibragimov, A central limit theorem for a class of dependent random variables. Teor. Veroyatnost. i Primenen. 8 (1963) 89-94 (in Russian). [English translation : Theor. Probab. Appl. 8 (1963) 83-89]. | MR | Zbl

[17] I.A. Ibragimov, A note on the central limit theorem for dependent random variables. Teor. Veroyatnost. i Primenen. 20 (1975) 134-140 (in Russian). [English translation : Theor. Probab. Appl. 20 (1975) 135-141]. | MR | Zbl

[18] J.W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math. Zeitschr. 15 (1922) 211-225. | JFM | MR

[19] J.S. Liu, Siegel's formula via Stein's identities. Statist. Probab. Lett. 21 (1994) 247-251. | MR | Zbl

[20] H. Lütkepohl, Handbook of Matrices. Wiley, Chichester (1996). | MR | Zbl

[21] M.H. Neumann and E. Paparoditis, Goodness-of-fit tests for Markovian time series models : Central limit theory and bootstrap approximations. Bernoulli 14 (2008) 14-46. | MR | Zbl

[22] M.H. Neumann and E. Paparoditis, A test for stationarity. Manuscript (2011).

[23] M.H. Neumann and R. Von Sachs, Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist. 25 (1997) 38-76. | MR | Zbl

[24] E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM : PS 1 (1995) 35-61. | Numdam | MR | Zbl

[25] M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43-47. | MR | Zbl

[26] M. Rosenblatt, Linear processes and bispectra. J. Appl. Probab. 17 (1980) 265-270. | MR | Zbl

[27] V.A. Volkonski and Y.A. Rozanov, Some limit theorems for random functions, Part I. Teor. Veroyatn. Primen. 4 (1959) 186-207 (in Russian). [English translation : Theory Probab. Appl. 4 (1959) 178-197]. | Zbl

  • Kluger, Dan M.; Owen, Art B. A central limit theorem for the Benjamini-Hochberg false discovery proportion under a factor model, Bernoulli, Volume 30 (2024) no. 1, pp. 743-769 | DOI:10.3150/23-bej1615 | Zbl:7788902
  • Bachoc, François; Muehlmann, Christoph; Nordhausen, Klaus; Virta, Joni Large-sample properties of non-stationary source separation for Gaussian signals, Electronic Journal of Statistics, Volume 18 (2024) no. 1, pp. 2241-2291 | DOI:10.1214/24-ejs2252 | Zbl:7905749
  • Babii, Andrii; Ghysels, Eric; Striaukas, Jonas High-Dimensional Granger Causality Tests with an Application to VIX and News, Journal of Financial Econometrics, Volume 22 (2024) no. 3, p. 605 | DOI:10.1093/jjfinec/nbac023
  • Borgonovo, Emanuele; Plischke, Elmar; Prieur, Clémentine Total effects with constrained features, Statistics and Computing, Volume 34 (2024) no. 2, p. 25 (Id/No 87) | DOI:10.1007/s11222-024-10398-5 | Zbl:1539.62010
  • Merlevède, Florence; Peligrad, Magda Functional central limit theorem via nonstationary projective conditions, High dimensional probability IX. The ethereal volume. Selected papers based on the presentations at the 9th conference, virtual, June 15–19, 2020, Cham: Springer, 2023, pp. 229-254 | DOI:10.1007/978-3-031-26979-0_10 | Zbl:1535.60054
  • Hafouta, Yeor Convergence rates in the functional CLT for α-mixing triangular arrays, Stochastic Processes and their Applications, Volume 161 (2023), pp. 242-290 | DOI:10.1016/j.spa.2023.04.008 | Zbl:1532.60063
  • Bobbia, Benjamin; Doukhan, Paul; Fan, Xiequan Selected topics on weak dependence conditions, Graduate Journal of Mathematics, Volume 7 (2022) no. 2, pp. 76-94 | Zbl:7709548
  • Grinshpon, Yoel; White, Moshe J. Spectral fluctuations for the multi-dimensional Anderson model, Journal of Spectral Theory, Volume 12 (2022) no. 2, pp. 591-615 | DOI:10.4171/jst/412 | Zbl:1504.82022
  • Poignard, Benjamin Asymptotic theory of the adaptive sparse group Lasso, Annals of the Institute of Statistical Mathematics, Volume 72 (2020) no. 1, pp. 297-328 | DOI:10.1007/s10463-018-0692-7 | Zbl:1436.62342
  • Bachoc, François; Betancourt, José; Furrer, Reinhard; Klein, Thierry Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes, Electronic Journal of Statistics, Volume 14 (2020) no. 1, pp. 1962-2008 | DOI:10.1214/20-ejs1712 | Zbl:1441.62248
  • Babii, Andrii; Ghysels, Eric; Striaukas, Jonas Inference for High-Dimensional Regressions With Heteroskedasticity and Auto-correlation, SSRN Electronic Journal (2020) | DOI:10.2139/ssrn.3615718
  • Bachoc, François; Bevilacqua, Moreno; Velandia, Daira Composite likelihood estimation for a Gaussian process under fixed domain asymptotics, Journal of Multivariate Analysis, Volume 174 (2019), p. 17 (Id/No 104534) | DOI:10.1016/j.jmva.2019.104534 | Zbl:1428.62419
  • Mansour, Toufik; Rastegar, Reza; Roitershtein, Alexander On ballistic deposition process on a strip, Journal of Statistical Physics, Volume 177 (2019) no. 4, pp. 626-650 | DOI:10.1007/s10955-019-02383-4 | Zbl:1427.60208
  • Kokoszka, Piotr; Miao, Hong; Reimherr, Matthew; Taoufik, Bahaeddine Dynamic Functional Regression with Application to the Cross-section of Returns, Journal of Financial Econometrics, Volume 16 (2018) no. 3, p. 461 | DOI:10.1093/jjfinec/nbx027
  • Geller, Juliane; Neumann, Michael H. Improved local polynomial estimation in time series regression, Journal of Nonparametric Statistics, Volume 30 (2018) no. 1, pp. 1-27 | DOI:10.1080/10485252.2017.1402118 | Zbl:1415.62020
  • Bachoc, François; Lagnoux, Agnès; Nguyen, Thi Mong Ngoc Cross-validation estimation of covariance parameters under fixed-domain asymptotics, Journal of Multivariate Analysis, Volume 160 (2017), pp. 42-67 | DOI:10.1016/j.jmva.2017.06.003 | Zbl:1378.62096
  • Mishchenko, Yuriy Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse “shotgun” neuronal activity sampling, Journal of Computational Neuroscience, Volume 41 (2016) no. 2, pp. 157-184 | DOI:10.1007/s10827-016-0611-y | Zbl:1382.92070
  • Dyckerhoff, Rainer; Ley, Christophe; Paindaveine, Davy Depth-based runs tests for bivariate central symmetry, Annals of the Institute of Statistical Mathematics, Volume 67 (2015) no. 5, pp. 917-941 | DOI:10.1007/s10463-014-0480-y | Zbl:1441.62122
  • Banna, Marwa; Merlevède, Florence Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes, Journal of Theoretical Probability, Volume 28 (2015) no. 2, pp. 745-783 | DOI:10.1007/s10959-013-0508-x | Zbl:1325.60043
  • Krampe, J.; Kreiss, J.-P.; Paparoditis, E. Hybrid wild bootstrap for nonparametric trend estimation in locally stationary time series, Statistics Probability Letters, Volume 101 (2015), pp. 54-63 | DOI:10.1016/j.spl.2015.03.003 | Zbl:1328.62524
  • Alj, Abdelkamel; Azrak, Rajae; Mélard, Guy On conditions in central limit theorems for martingale difference arrays, Economics Letters, Volume 123 (2014) no. 3, pp. 305-307 | DOI:10.1016/j.econlet.2014.03.008 | Zbl:1293.60030
  • Dedecker, Jérôme; Rio, Emmanuel; Merlevède, Florence Strong approximation of the empirical distribution function for absolutely regular sequences in Rd, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-2658
  • Leucht, Anne; Neumann, Michael H. Dependent wild bootstrap for degenerate U- and V-statistics, Journal of Multivariate Analysis, Volume 117 (2013), pp. 257-280 | DOI:10.1016/j.jmva.2013.03.003 | Zbl:1279.62102

Cité par 23 documents. Sources : Crossref, zbMATH