This paper deals with order identification for Markov chains with Markov regime (MCMR) in the context of finite alphabets. We define the joint order of a MCMR process in terms of the number
Mots-clés : Markov regime, order estimation, hidden states, conditional memory, hidden Markov model
@article{PS_2009__13__38_0, author = {Chambaz, Antoine and Matias, Catherine}, title = {Number of hidden states and memory : a joint order estimation problem for {Markov} chains with {Markov} regime}, journal = {ESAIM: Probability and Statistics}, pages = {38--50}, publisher = {EDP-Sciences}, volume = {13}, year = {2009}, doi = {10.1051/ps:2007048}, mrnumber = {2493854}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps:2007048/} }
TY - JOUR AU - Chambaz, Antoine AU - Matias, Catherine TI - Number of hidden states and memory : a joint order estimation problem for Markov chains with Markov regime JO - ESAIM: Probability and Statistics PY - 2009 SP - 38 EP - 50 VL - 13 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps:2007048/ DO - 10.1051/ps:2007048 LA - en ID - PS_2009__13__38_0 ER -
%0 Journal Article %A Chambaz, Antoine %A Matias, Catherine %T Number of hidden states and memory : a joint order estimation problem for Markov chains with Markov regime %J ESAIM: Probability and Statistics %D 2009 %P 38-50 %V 13 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps:2007048/ %R 10.1051/ps:2007048 %G en %F PS_2009__13__38_0
Chambaz, Antoine; Matias, Catherine. Number of hidden states and memory : a joint order estimation problem for Markov chains with Markov regime. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 38-50. doi : 10.1051/ps:2007048. https://www.numdam.org/articles/10.1051/ps:2007048/
[1] On the identifiability problem for functions of finite Markov chains. Ann. Math. Stat. 28 (1957) 1011-1015. | MR | Zbl
and ,[2] Order estimation and model selection, in Inference in hidden Markov models, Olivier Cappé, Eric Moulines, and Tobias Rydén (Eds.), Springer Series in Statistics. New York, NY: Springer (2005). | MR
and ,[3] A Bayesian approach to DNA sequence segmentation. Biometrics 60 (2004) 573-588. | MR
and ,[4] Inference in hidden Markov models. Springer Series in Statistics (2005). | MR | Zbl
, and (Eds.),[5] Context tree estimation for not necessarily finite memory processes, via BIC and MDL. IEEE Trans. Info. Theory 52 (2006) 1007-1016. | MR
and ,[6] Efficient universal noiseless source codes. IEEE Trans. Inf. Theory 27 (1981) 269-279. | MR | Zbl
, , and ,[7] Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39 (1977) 1-38. With discussion. | MR | Zbl
, and ,[8] Hidden Markov processes. IEEE Trans. Inform. Theory, special issue in memory of Aaron D. Wyner 48 (2002) 1518-1569. | MR | Zbl
and ,[9] Consistent estimation of the order for Markov and hidden Markov chains. Ph.D. Thesis, University of Maryland, ISR, USA (1991).
,[10] Efficient likelihood estimation in state space models. Ann. Stat. 34 (2006) 2026-2068. | MR
,[11] Optimal error exponents in hidden Markov model order estimation. IEEE Trans. Info. Theory 48 (2003) 964-980. | MR | Zbl
and ,[12] The estimation of the order of an ARMA process. Ann. Stat. 8 (1980) 1071-1081. | MR | Zbl
,[13] Identifiability of hidden Markov information sources and their minimum degrees of freedom. IEEE Trans. Inf. Theory 38 (1992) 324-333. | MR | Zbl
, and ,[14] Strongly consistent code-based identification and order estimation for constrained finite-state model classes. IEEE Trans. Inf. Theory 39 (1993) 893-902. | MR | Zbl
,[15] Maximum-likelihood estimation for hidden Markov models. Stochastic Process. Appl. 40 (1992) 127-143. | MR | Zbl
,[16] Order estimation and sequential universal data compression of a hidden Markov source by the method of mixtures. IEEE Trans. Inf. Theory 40 (1994) 1167-1180. | Zbl
and ,[17] Estimating the order of a hidden markov model. Canadian J. Stat. 30 (2002) 573-589. | MR | Zbl
,[18] Mining bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res. 30 (2002) 1418-1426.
, , , , , , and ,[19] SHOW User Manual. URL: http://www-mig.jouy.inra.fr/ssb/SHOW/show_doc.pdf (2004). Software available at URL: http://www-mig.jouy.inra.fr/ssb/SHOW/.
, and ,[20] Estimation of autoregressive moving-average order given an infinite number of models and approximation of spectral densities. J. Time Ser. Anal. 11 (1990) 165-179. | MR | Zbl
,[21] Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. J. R. Stat. Soc., Ser. B, Stat. Methodol. 62 (2000) 57-75. | MR | Zbl
, and ,[22] Estimating the order of hidden Markov models. Statistics 26 (1995) 345-354. | MR | Zbl
,[23] Universal sequential coding of single messages. Probl. Inf. Trans. 23 (1988) 175-186. | Zbl
,Cité par Sources :