We analyze the Rosenblatt process which is a selfsimilar process with stationary increments and which appears as limit in the so-called Non Central Limit Theorem (Dobrushin and Majòr (1979), Taqqu (1979)). This process is non-gaussian and it lives in the second Wiener chaos. We give its representation as a Wiener-Itô multiple integral with respect to the brownian motion on a finite interval and we develop a stochastic calculus with respect to it by using both pathwise type calculus and Malliavin calculus.
Mots-clés : non central limit theorem, Rosenblatt process, fractional brownian motion, stochastic calculus via regularization, Malliavin calculus, Skorohod integral
@article{PS_2008__12__230_0, author = {Tudor, Ciprian A.}, title = {Analysis of the {Rosenblatt} process}, journal = {ESAIM: Probability and Statistics}, pages = {230--257}, publisher = {EDP-Sciences}, volume = {12}, year = {2008}, doi = {10.1051/ps:2007037}, mrnumber = {2374640}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps:2007037/} }
Tudor, Ciprian A. Analysis of the Rosenblatt process. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 230-257. doi : 10.1051/ps:2007037. https://www.numdam.org/articles/10.1051/ps:2007037/
[1] Wavelet-based synthesis of the Rosenblatt process. Signal Process. 86 (2006) 2326-2339. | Zbl
and ,[2] A note on the Rosenblatt distributions. Statist. Probab. Lett. 40 (1998) 83-91. | MR | Zbl
,[3] On extremal theory for self similar processes. Ann. Probab. 26 (1998) 743-793. | MR | Zbl
,[4] Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001) 766-801. | MR | Zbl
, and ,[5] Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75 (2003) 129-152. | MR | Zbl
and ,[6] Mixed Brownian-fractional Brownian model: absence of arbitrage and related topics. Stochastics An Int. J. Probability Stochastic Processes 78 (2006) 281-300. | MR | Zbl
and ,
[7] Discrete approximation of stochastic integrals with respect of fractional Brownian motion of Hurst index
[8] Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8 (2003) 1-14. | EuDML | MR | Zbl
, and ,[9] Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1998) 177-214. | MR | Zbl
and ,[10] Stochastic equations in infinite dimensions. Cambridge University Press (1992). | MR | Zbl
and ,[11] Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50 (1979) 27-52. | MR | Zbl
and ,[12] Mild solutions to stochastic evolution equations with fractional Brownian motion. Diploma thesis at TU Darmstadt (2005).
,[13] Selfsimilar processes. Princeton University Press, Princeton, New York (2002). | MR | Zbl
and ,[14] Multiple stochastic integrals with dependent integrators. J. Mult. Anal. 21 (1987) 105-127. | MR | Zbl
and ,[15] Gaussian chaos and functional law of the ierated logarithm for Itô-Wiener integrals. Ann. I.H.P., Section B 29 (1993) 485-512. | Numdam | MR | Zbl
and ,
[16]
[17] Ito's and Tanaka's type formulae for the stochastic heat equation. J. Funct. Anal. 228 (2005) 114-143. | MR | Zbl
, and ,[18] Semiparametric Bootstrap Approach to Hypothesis tests and Confidence intervals for the Hurst coefficient. Stat. Infer. Stoch. Process. 3 (2000) 263-276. | MR | Zbl
, , and ,[19] Integrator properties of the Skorohod integral. Stochastics and Stochastics Reports 41 (1992) 163-176. | MR | Zbl
and ,[20] On an independence criterion for multiple Wiener integrals. Ann. Probab. 19 (1991) 483-485. | MR | Zbl
,[21] Estimation of the long-range dependence parameter of fractional Brownian motionin, in Proc. 28th IEEE LCN03 (2003).
and ,[22] Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal. 249 (2007) 92-142. | MR | Zbl
, and ,[23] Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence. J. Appl. Math. Stoch. Anal. 14 (2001) 27-46. | MR | Zbl
and ,[24] Scaling limits of solutions of the heat equation for singular Non-Gaussian data. J. Stat. Phys. 91 423-438. | MR | Zbl
and ,[25] Wiener integrals with respect to the Hermite process and a non central limit theorem. Stoch. Anal. Appl. 25 (2007) 1043-1056. | MR | Zbl
and ,[26] Skorohod integration and stochastic calculus beyond the fractional Brownian scale. J. Funct. Anal. 222 (2004) 385-434. | MR | Zbl
and ,[27] An elementary approach to a Girsanov formula and other analytical results for fractional Brownian motion. Bernoulli 5 (1999) 571-587. | MR | Zbl
, and ,[28] A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Séminaire de Probabilités XLI (2006). To appear. | MR | Zbl
,[29] Malliavin Calculus and Related Topics. Springer (1995). | MR | Zbl
,[30] Generalized mulptiple stochastic integrals and the representation of Wiener functionals. Stochastics 23 (1987) 311-330. | MR | Zbl
and ,[31] Wavelet type expansion of the Rosenblatt process. J. Fourier Anal. Appl. 10 (2004) 599-634. | MR | Zbl
,[32] Convergence of weighted sums of random variables with long range dependence. Stoch. Process. Appl. 90 (2000) 157-174. | MR | Zbl
and ,[33] Integration questions related to the fractional Brownian motion. Probab. Theor. Relat. Fields 118 (2001) 251-281. | MR | Zbl
and ,
[34] Skorohod and pathwise stochastic calculus with respect to an
[35] System control and rough paths. Clarendon Press, Oxford (2002). | MR | Zbl
and ,[36] Independence and dependence. Proc. 4th Berkeley Symposium on Math, Stat. II (1961) 431-443. | MR | Zbl
,[37] Forward backward and symmetric stochastic integration. Probab. Theor. Relat. Fields 97 (1993) 403-421. | MR | Zbl
and ,[38] Stochastic calculus with respect to a finite quadratic variation process. Stoch. Stoch. Rep. 70 (2000) 1-40. | MR | Zbl
and ,[39] Elements of stochastic calculus via regularization. Preprint, to appear in Séminaire de Probabilités (2006). | MR | Zbl
and ,[40] Stable Non-Gaussian random variables. Chapman and Hall, London (1994). | MR
and ,[41] On independence and conditioning on Wiener space. Ann. Probab. 17 (1989) 1441-1453. | MR | Zbl
and ,[42] Weak convergence to the fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31 (1975) 287-302. | MR | Zbl
,[43] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50 (1979) 53-83. | MR | Zbl
,[44] A bibliographical guide to selfsimilar processes and long-range dependence. Dependence in Probability and Statistics, Birkhauser, Boston (1986) 137-162. | MR | Zbl
,[45] Stochastic evolution equations with fractional Brownian motion. Probab. Theor. Relat. Fields. 127 (2003) 186-204. | MR | Zbl
, and ,[46] Itô's formula for the infinite-dimensional fractional Brownian motion. J. Math. Kyoto University 45 (2005) 531-546. | MR | Zbl
,[47] Unit root testing for functionals of linear processes. Econ. Theory 22 (2005) 1-14. | MR | Zbl
,- Young differential equations driven by Besov–Orlicz paths, Discrete and Continuous Dynamical Systems - B, Volume 0 (2025) no. 0, p. 0 | DOI:10.3934/dcdsb.2025044
- Successive Approximation and Stability Analysis of Fractional Stochastic Differential Systems with Non-Gaussian Process and Poisson Jumps, Fractal and Fractional, Volume 9 (2025) no. 2, p. 130 | DOI:10.3390/fractalfract9020130
- Stability and Controllability Analysis of Stochastic Fractional Differential Equations Under Integral Boundary Conditions Driven by Rosenblatt Process with Impulses, Fractal and Fractional, Volume 9 (2025) no. 3, p. 146 | DOI:10.3390/fractalfract9030146
- Averaging principle for fractional stochastic differential equations driven by Rosenblatt process and Poisson jumps, Journal of Control and Decision (2025), p. 1 | DOI:10.1080/23307706.2025.2452431
- Exponential Stability of Higher Order Fractional Neutral Stochastic Differential Equation Via Integral Contractors, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 6, p. 6425 | DOI:10.1002/mma.10681
- Generalized Hermite process: Tempering, properties and applications, Monte Carlo Methods and Applications, Volume 31 (2025) no. 1, p. 75 | DOI:10.1515/mcma-2025-2003
- Controllability Analysis of Neutral Stochastic Differential Equation Using
-Hilfer Fractional Derivative with Rosenblatt Process, Qualitative Theory of Dynamical Systems, Volume 24 (2025) no. 1 | DOI:10.1007/s12346-024-01178-7 - An Investigation on the Approximate Controllability of Non-instantaneous Impulsive Hilfer Sobolev-Type Fractional Stochastic System Driven by the Rosenblatt Process and Poisson Jumps, Qualitative Theory of Dynamical Systems, Volume 24 (2025) no. 2 | DOI:10.1007/s12346-025-01222-0
- The linear self-attracting diffusion driven by the weighted-fractional Brownian motion II: The parameter estimation, Science China Mathematics, Volume 68 (2025) no. 4, p. 939 | DOI:10.1007/s11425-023-2261-5
- Parameter estimation and singularity of laws on the path space for SDEs driven by Rosenblatt processes, Stochastic Processes and their Applications, Volume 179 (2025), p. 104499 | DOI:10.1016/j.spa.2024.104499
- , 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT) (2024), p. 1475 | DOI:10.1109/codit62066.2024.10708566
- , 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT) (2024), p. 982 | DOI:10.1109/codit62066.2024.10708394
- , 2024 IEEE 63rd Conference on Decision and Control (CDC) (2024), p. 1850 | DOI:10.1109/cdc56724.2024.10886161
- , 2024 IEEE 63rd Conference on Decision and Control (CDC) (2024), p. 4227 | DOI:10.1109/cdc56724.2024.10886859
- Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps, AIMS Mathematics, Volume 9 (2024) no. 4, p. 9746 | DOI:10.3934/math.2024477
- On Advances in Noise Modeling in Stochastic Systems, Control and Adaptive Control, Adaptive Control Theory and Applications (2024) | DOI:10.5772/intechopen.1005451
- Approximate Optimal Control of Fractional Impulsive Partial Stochastic Differential Inclusions Driven by Rosenblatt Process, Applied Mathematics Optimization, Volume 89 (2024) no. 1 | DOI:10.1007/s00245-023-10071-9
- Optimal controls of impulsive fractional stochastic differential systems driven by Rosenblatt process with state‐dependent delay, Asian Journal of Control, Volume 26 (2024) no. 1, p. 162 | DOI:10.1002/asjc.3193
- Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process, Fractal and Fractional, Volume 8 (2024) no. 6, p. 342 | DOI:10.3390/fractalfract8060342
- Approximate optimal control of fractional stochastic hemivariational inequalities of order (1, 2] driven by Rosenblatt process, Fractional Calculus and Applied Analysis, Volume 27 (2024) no. 2, p. 848 | DOI:10.1007/s13540-024-00257-5
- New exploration on the existence and null controllability of fractional Hilfer stochastic systems driven by Poisson jumps and fractional Brownian motion with non-instantaneous impulse, International Journal of Dynamics and Control, Volume 12 (2024) no. 10, p. 3791 | DOI:10.1007/s40435-024-01451-2
- Stability and controllability of
-Caputo fractional stochastic differential systems driven by Rosenblatt process with impulses, International Journal of Dynamics and Control, Volume 12 (2024) no. 5, p. 1626 | DOI:10.1007/s40435-023-01286-3 - Existence and approximate controllability for the Hilfer fractional neutral stochastic hemivariational inequality with Rosenblatt process, Journal of Control and Decision (2024), p. 1 | DOI:10.1080/23307706.2024.2403492
- Existence and Hyers–Ulam Stability of Stochastic Delay Systems Governed by the Rosenblatt Process, Mathematics, Volume 12 (2024) no. 11, p. 1729 | DOI:10.3390/math12111729
- Approximate Controllability for Hilfer Fractional Stochastic Non-instantaneous Impulsive Differential System with Rosenblatt Process and Poisson Jumps, Qualitative Theory of Dynamical Systems, Volume 23 (2024) no. 2 | DOI:10.1007/s12346-023-00912-x
- Limit behavior in high-dimensional regime for Wishart tensors with Rosenblatt entries, Random Matrices: Theory and Applications, Volume 13 (2024) no. 04 | DOI:10.1142/s2010326324500205
- Fourier approach to goodness-of-fit tests for Gaussian random processes, Statistical Papers, Volume 65 (2024) no. 5, p. 2937 | DOI:10.1007/s00362-023-01510-4
- Harnack inequalities for functional SDEs driven by subordinate Volterra-Gaussian processes, Stochastic Analysis and Applications, Volume 42 (2024) no. 3, p. 622 | DOI:10.1080/07362994.2024.2326499
- Existence and Stability Results for Time-Dependent Impulsive Neutral Stochastic Partial Integrodifferential Equations with Rosenblatt Process and Poisson Jumps, Tatra Mountains Mathematical Publications, Volume 88 (2024) no. 3, p. 1 | DOI:10.2478/tmmp-2024-0002
- The exponential nature and solvability of stochastic multi-term fractional differential inclusions with Clarke’s subdifferential, Chaos, Solitons Fractals, Volume 168 (2023), p. 113202 | DOI:10.1016/j.chaos.2023.113202
- Solvability and trajectory controllability of impulsive stochastic MHD equations with Rosenblatt process, Chaos, Solitons Fractals, Volume 175 (2023), p. 114013 | DOI:10.1016/j.chaos.2023.114013
- Trajectory Controllability of Hilfer Fractional Neutral Stochastic Differential Equations with Deviated Argument Using Rosenblatt Process and Poisson Jumps, Differential Equations and Dynamical Systems (2023) | DOI:10.1007/s12591-023-00632-3
- Total controllability for noninstantaneous impulsive conformable fractional evolution system with nonlinear noise and nonlocal conditions, Filomat, Volume 37 (2023) no. 16, p. 5287 | DOI:10.2298/fil2316287a
- Wellposedness and controllability results of stochastic integrodifferential equations with noninstantaneous impulses and Rosenblatt process, Fixed Point Theory and Algorithms for Sciences and Engineering, Volume 2023 (2023) no. 1 | DOI:10.1186/s13663-023-00744-z
- Optimal Control for Neutral Stochastic Integrodifferential Equations with Infinite Delay Driven by Poisson Jumps and Rosenblatt Process, Fractal and Fractional, Volume 7 (2023) no. 11, p. 783 | DOI:10.3390/fractalfract7110783
- Null controllability of Hilfer fractional stochastic integrodifferential equations with noninstantaneous impulsive and Poisson jump, International Journal of Nonlinear Sciences and Numerical Simulation, Volume 24 (2023) no. 6, p. 2347 | DOI:10.1515/ijnsns-2020-0292
- Optimal control of Hilfer fractional stochastic integrodifferential systems driven by Rosenblatt process and Poisson jumps, Journal of Control and Decision, Volume 10 (2023) no. 4, p. 538 | DOI:10.1080/23307706.2022.2120554
- LabVIEW-based fire extinguisher model based on acoustic airflow vibrations, Journal of Soft Computing and Artificial Intelligence, Volume 4 (2023) no. 1, p. 38 | DOI:10.55195/jscai.1310837
- Transport equation driven by a stochastic measure, Modern Stochastics: Theory and Applications (2023), p. 197 | DOI:10.15559/23-vmsta222
- The Burgers equation driven by a stochastic measure, Modern Stochastics: Theory and Applications (2023), p. 229 | DOI:10.15559/23-vmsta224
- Fractional neutral functional differential equations driven by the Rosenblatt process with an infinite delay, Random Operators and Stochastic Equations, Volume 31 (2023) no. 3, p. 225 | DOI:10.1515/rose-2023-2009
- Existence results for some stochastic functional integrodifferential systems driven by Rosenblatt process, Random Operators and Stochastic Equations, Volume 31 (2023) no. 4, p. 371 | DOI:10.1515/rose-2023-2020
- Trajectory control and pth moment exponential stability of neutral functional stochastic systems driven by Rosenblatt process, Results in Applied Mathematics, Volume 18 (2023), p. 100366 | DOI:10.1016/j.rinam.2023.100366
- Fractal dimensions of the Rosenblatt process, Stochastic Processes and their Applications, Volume 161 (2023), p. 544 | DOI:10.1016/j.spa.2023.04.001
- Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness, Chaos, Solitons Fractals, Volume 157 (2022), p. 111960 | DOI:10.1016/j.chaos.2022.111960
- Asymptotic error distribution for the Riemann approximation of integrals driven by fractional Brownian motion, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp852
- Existence of solutions for non-autonomous second-order stochastic inclusions with Clarke’s subdifferential and non instantaneous impulses, Filomat, Volume 36 (2022) no. 4, p. 1215 | DOI:10.2298/fil2204215u
- Exponential behavior of nonlinear stochastic partial functional equations driven by Poisson jumps and Rosenblatt process, Filomat, Volume 36 (2022) no. 9, p. 2857 | DOI:10.2298/fil2209857a
- Controllability of Fractional Stochastic Delay Systems Driven by the Rosenblatt Process, Fractal and Fractional, Volume 6 (2022) no. 11, p. 664 | DOI:10.3390/fractalfract6110664
- References, General Stochastic Measures (2022), p. 231 | DOI:10.1002/9781394163939.refs
- Hilfer fractional neutral stochastic partial differential equations with delay driven by Rosenblatt process, Journal of Control and Decision, Volume 9 (2022) no. 2, p. 226 | DOI:10.1080/23307706.2021.1953412
- Stochastic integration with respect to fractional processes in Banach spaces, Journal of Functional Analysis, Volume 282 (2022) no. 8, p. 109393 | DOI:10.1016/j.jfa.2022.109393
- On a generalized stochastic Burgers' equation perturbed by Volterra noise, Journal of Mathematical Analysis and Applications, Volume 506 (2022) no. 1, p. 125638 | DOI:10.1016/j.jmaa.2021.125638
- The Laws of Large Numbers Associated with the Linear Self-attracting Diffusion Driven by Fractional Brownian Motion and Applications, Journal of Theoretical Probability, Volume 35 (2022) no. 3, p. 1423 | DOI:10.1007/s10959-021-01126-0
- Advances in Noise Modeling for Stochastic Systems in Optimal Control, La Matematica, Volume 1 (2022) no. 3, p. 685 | DOI:10.1007/s44007-022-00025-y
- Optimal Mild Solutions of Time-Fractional Stochastic Navier-Stokes Equation with Rosenblatt Process in Hilbert Space, Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy, Volume 1405 (2022), p. 93 | DOI:10.1007/978-981-16-5952-2_9
- Controllability of Stochastic Delay Systems Driven by the Rosenblatt Process, Mathematics, Volume 10 (2022) no. 22, p. 4223 | DOI:10.3390/math10224223
- Optimal controls for fractional stochastic differential systems driven by Rosenblatt process with impulses, Optimal Control Applications and Methods, Volume 43 (2022) no. 2, p. 386 | DOI:10.1002/oca.2805
- Warning signs for non-Markovian bifurcations: colour blindness and scaling laws, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 478 (2022) no. 2259 | DOI:10.1098/rspa.2021.0740
- Noninstantaneous Impulsive Conformable Fractional Stochastic Delay Integro-Differential System with Rosenblatt Process and Control Function, Qualitative Theory of Dynamical Systems, Volume 21 (2022) no. 1 | DOI:10.1007/s12346-021-00544-z
- Optimal control for neutral stochastic systems with infinite time delay and deviated argument driven by Rosenblatt process, Results in Control and Optimization, Volume 9 (2022), p. 100181 | DOI:10.1016/j.rico.2022.100181
- Optimal Controls for Neutral Stochastic Integrodifferential Equations with Infinite Time Delay and Deviated Argument Driven by Rosenblatt Process, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4150578
- Existence and Hölder continuity conditions for self-intersection local time of Rosenblatt process, Stochastic Analysis and Applications, Volume 40 (2022) no. 6, p. 978 | DOI:10.1080/07362994.2021.1973497
- Examples of Finite Quadratic Variation Processes, Stochastic Calculus via Regularizations, Volume 11 (2022), p. 259 | DOI:10.1007/978-3-031-09446-0_8
- A stochastic calculus for Rosenblatt processes, Stochastic Processes and their Applications, Volume 150 (2022), p. 853 | DOI:10.1016/j.spa.2020.01.004
- AR(1) processes driven by second-chaos white noise: Berry–Esséen bounds for quadratic variation and parameter estimation, Stochastic Processes and their Applications, Volume 150 (2022), p. 886 | DOI:10.1016/j.spa.2020.02.007
- Mild stochastic sewing lemma, SPDE in random environment, and fractional averaging, Stochastics and Dynamics, Volume 22 (2022) no. 07 | DOI:10.1142/s0219493722400251
- Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses, Chaos, Solitons Fractals, Volume 151 (2021), p. 111292 | DOI:10.1016/j.chaos.2021.111292
- Non symmetric Rosenblatt process over a compact, Communications in Statistics - Theory and Methods, Volume 50 (2021) no. 23, p. 5517 | DOI:10.1080/03610926.2020.1734830
- Existence and controllability of impulsive fractional stochastic differential equations driven by Rosenblatt process with Poisson jumps, Journal of Engineering Mathematics, Volume 130 (2021) no. 1 | DOI:10.1007/s10665-021-10167-7
- Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 1, p. 217 | DOI:10.1017/prm.2020.11
- Controllability of impulsive neutral stochastic integro-differential systems driven by a Rosenblatt process with unbounded delay, Random Operators and Stochastic Equations, Volume 29 (2021) no. 4, p. 237 | DOI:10.1515/rose-2021-2063
- Fractional neutral stochastic differential equations with Caputo fractional derivative: Fractional Brownian motion, Poisson jumps, and optimal control, Stochastic Analysis and Applications, Volume 39 (2021) no. 1, p. 157 | DOI:10.1080/07362994.2020.1789476
- Conformable fractional stochastic differential equations with control function, Systems Control Letters, Volume 158 (2021), p. 105062 | DOI:10.1016/j.sysconle.2021.105062
- , 2020 59th IEEE Conference on Decision and Control (CDC) (2020), p. 343 | DOI:10.1109/cdc42340.2020.9304316
- Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Mathematica, Volume 71 (2020) no. 1, p. 63 | DOI:10.1007/s13348-019-00248-3
- Ergodic Linear-Quadratic Control for a Two Dimensional Stochastic System Driven by a Continuous Non-Gaussian Noise, IFAC-PapersOnLine, Volume 53 (2020) no. 2, p. 2177 | DOI:10.1016/j.ifacol.2020.12.2548
- Approximate controllability of nonlinear Hilfer fractional stochastic differential system with Rosenblatt process and Poisson jumps, International Journal of Nonlinear Sciences and Numerical Simulation, Volume 21 (2020) no. 7-8, p. 727 | DOI:10.1515/ijnsns-2019-0141
- Representations of hermite processes using local time of intersecting stationary stable regenerative sets, Journal of Applied Probability, Volume 57 (2020) no. 4, p. 1234 | DOI:10.1017/jpr.2020.57
- Exponential behavior of neutral impulsive stochastic integro-differential equations driven by Poisson jumps and Rosenblatt process, Nonautonomous Dynamical Systems, Volume 7 (2020) no. 1, p. 1 | DOI:10.1515/msds-2020-0001
- Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean, Statistical Inference for Stochastic Processes, Volume 23 (2020) no. 1, p. 227 | DOI:10.1007/s11203-019-09200-5
- Controllability for Time-dependent Neutral Stochastic Functional Differential Equations with Rosenblatt Process and Impulses, International Journal of Control, Automation and Systems, Volume 17 (2019) no. 2, p. 286 | DOI:10.1007/s12555-016-0363-5
- PRICING DERIVATIVES IN HERMITE MARKETS, International Journal of Theoretical and Applied Finance, Volume 22 (2019) no. 06, p. 1950031 | DOI:10.1142/s0219024919500316
- Neutral stochastic functional differential evolution equations driven by Rosenblatt process with varying-time delays, Proyecciones (Antofagasta), Volume 38 (2019) no. 4, p. 665 | DOI:10.22199/issn.0717-6279-2019-04-0043
- Existence, uniqueness and stability of impulsive stochastic neutral functional differential equations driven by Rosenblatt process with varying-time delays, Random Operators and Stochastic Equations, Volume 27 (2019) no. 4, p. 213 | DOI:10.1515/rose-2019-2019
- Time-Dependent Neutral Stochastic Delay Partial Differential Equations Driven by Rosenblatt Process in Hilbert Space, Recent Advances in Intuitionistic Fuzzy Logic Systems, Volume 372 (2019), p. 301 | DOI:10.1007/978-3-030-02155-9_24
- Donsker type theorem for fractional Poisson process, Statistics Probability Letters, Volume 150 (2019), p. 1 | DOI:10.1016/j.spl.2019.01.036
- On impulsive Hilfer fractional stochastic differential system driven by Rosenblatt process, Stochastic Analysis and Applications, Volume 37 (2019) no. 6, p. 955 | DOI:10.1080/07362994.2019.1629301
- Averaging principle for equation driven by a stochastic measure, Stochastics, Volume 91 (2019) no. 6, p. 905 | DOI:10.1080/17442508.2018.1559320
- A Note on Distributions in the Second Chaos, Symmetry, Volume 11 (2019) no. 12, p. 1487 | DOI:10.3390/sym11121487
- , 2018 IEEE Conference on Decision and Control (CDC) (2018), p. 4973 | DOI:10.1109/cdc.2018.8619402
- Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process, Frontiers of Mathematics in China, Volume 13 (2018) no. 1, p. 87 | DOI:10.1007/s11464-017-0672-x
- Retarded stochastic differential equations with infinite delay driven by Rosenblatt process, Stochastic Analysis and Applications, Volume 36 (2018) no. 2, p. 304 | DOI:10.1080/07362994.2017.1399801
- Limiting measure and stationarity of solutions to stochastic evolution equations with Volterra noise, Stochastic Analysis and Applications, Volume 36 (2018) no. 3, p. 393 | DOI:10.1080/07362994.2017.1409124
- SPDEs with Volterra Noise, Stochastic Partial Differential Equations and Related Fields, Volume 229 (2018), p. 147 | DOI:10.1007/978-3-319-74929-7_7
- Non-central limit theorems for quadratic functionals of Hermite-driven long memory moving average processes, Stochastics and Dynamics, Volume 18 (2018) no. 04, p. 1850028 | DOI:10.1142/s0219493718500284
- Lp-valued stochastic convolution integral driven by Volterra noise, Stochastics and Dynamics, Volume 18 (2018) no. 06, p. 1850048 | DOI:10.1142/s021949371850048x
- Weak convergence to a class of multiple stochastic integrals, Communications in Statistics - Theory and Methods, Volume 46 (2017) no. 17, p. 8355 | DOI:10.1080/03610926.2016.1179758
- Approximation of the Rosenblatt process by semimartingales, Communications in Statistics - Theory and Methods, Volume 46 (2017) no. 9, p. 4556 | DOI:10.1080/03610926.2015.1088032
- An Optimal Approximation of Rosenblatt Sheet by Multiple Wiener Integrals, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 2 | DOI:10.1007/s00009-017-0856-3
- Stochastic evolution equations with Volterra noise, Stochastic Processes and their Applications, Volume 127 (2017) no. 3, p. 877 | DOI:10.1016/j.spa.2016.07.003
- Functional limit theorems for generalized variations of the fractional Brownian sheet, Bernoulli, Volume 22 (2016) no. 3 | DOI:10.3150/15-bej707
- Multifractal Random Walk Driven by a Hermite Process, Handbook of High‐Frequency Trading and Modeling in Finance (2016), p. 221 | DOI:10.1002/9781118593486.ch8
- Approximation of the Rosenblatt Sheet, Mediterranean Journal of Mathematics, Volume 13 (2016) no. 4, p. 2215 | DOI:10.1007/s00009-015-0576-5
- Exponential stability for stochastic neutral functional differential equations driven by Rosenblatt process with delay and Poisson jumps, Random Operators and Stochastic Equations, Volume 24 (2016) no. 2, p. 113 | DOI:10.1515/rose-2016-0008
- Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions, The Annals of Applied Probability, Volume 26 (2016) no. 2 | DOI:10.1214/15-aap1114
- Approximating the Rosenblatt process by multiple Wiener integrals, Electronic Communications in Probability, Volume 20 (2015) no. none | DOI:10.1214/ecp.v20-3517
- Drift estimation with non-gaussian noise using Malliavin Calculus, Electronic Journal of Statistics, Volume 9 (2015) no. 2 | DOI:10.1214/15-ejs1101
- Weak convergence to Rosenblatt sheet, Frontiers of Mathematics in China, Volume 10 (2015) no. 4, p. 985 | DOI:10.1007/s11464-015-0458-y
- Forward integration, convergence and non-adapted pointwise multipliers, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 18 (2015) no. 01, p. 1550005 | DOI:10.1142/s0219025715500058
- On the rate of convergence to Rosenblatt-type distribution, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 1, p. 111 | DOI:10.1016/j.jmaa.2014.12.016
- From intersection local time to the Rosenblatt process, Journal of Theoretical Probability, Volume 28 (2015) no. 3, p. 1227 | DOI:10.1007/s10959-013-0535-7
- Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space, Journal of the Korean Statistical Society, Volume 44 (2015) no. 1, p. 123 | DOI:10.1016/j.jkss.2014.06.002
- Classes of Infinitely Divisible Distributions and Examples, Lévy Matters V, Volume 2149 (2015), p. 1 | DOI:10.1007/978-3-319-23138-9_1
- A White Noise Approach to Stochastic Integration with Respect to the Rosenblatt Process, Potential Analysis, Volume 43 (2015) no. 4, p. 547 | DOI:10.1007/s11118-015-9484-3
- Generalized continuous time random walks and Hermite processes, Statistics Probability Letters, Volume 99 (2015), p. 44 | DOI:10.1016/j.spl.2014.12.027
- A Weak Convergence to Hermite Process by Martingale Differences, Advances in Mathematical Physics, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/307819
- Wiener integrals with respect to the Hermite random field and applications to the wave equation, Collectanea Mathematica, Volume 65 (2014) no. 3, p. 341 | DOI:10.1007/s13348-014-0108-9
- Quadratic variations for the fractional-colored stochastic heat equation, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-2698
- Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process, Journal of Multivariate Analysis, Volume 131 (2014), p. 1 | DOI:10.1016/j.jmva.2014.06.012
- Non-central limit theorem of the weighted power variations of Gaussian processes, Journal of the Korean Statistical Society, Volume 43 (2014) no. 2, p. 215 | DOI:10.1016/j.jkss.2013.09.001
- Generalized Hermite processes, discrete chaos and limit theorems, Stochastic Processes and their Applications, Volume 124 (2014) no. 4, p. 1710 | DOI:10.1016/j.spa.2013.12.011
- On a class of self-similar processes with stationary increments in higher order Wiener chaoses, Stochastic Processes and their Applications, Volume 124 (2014) no. 7, p. 2415 | DOI:10.1016/j.spa.2014.02.012
- Properties and numerical evaluation of the Rosenblatt distribution, Bernoulli, Volume 19 (2013) no. 3 | DOI:10.3150/12-bej421
- On the distribution of the Rosenblatt process, Statistics Probability Letters, Volume 83 (2013) no. 6, p. 1490 | DOI:10.1016/j.spl.2013.02.019
- Random homogenization and convergence to integrals with respect to the Rosenblatt process, Journal of Differential Equations, Volume 253 (2012) no. 4, p. 1069 | DOI:10.1016/j.jde.2012.05.007
- A strong convergence to the Rosenblatt process, Journal of Mathematical Analysis and Applications, Volume 391 (2012) no. 2, p. 630 | DOI:10.1016/j.jmaa.2012.02.040
- An approximation to the Rosenblatt process using martingale differences, Statistics Probability Letters, Volume 82 (2012) no. 4, p. 748 | DOI:10.1016/j.spl.2011.12.006
- Option pricing under a Gamma-modulated diffusion process, Annals of Finance, Volume 7 (2011) no. 2, p. 199 | DOI:10.1007/s10436-011-0176-8
- Dissipative Stochastic Evolution Equations Driven by General Gaussian and Non-Gaussian Noise, Journal of Dynamics and Differential Equations, Volume 23 (2011) no. 4, p. 791 | DOI:10.1007/s10884-011-9217-2
- Bayesian estimation of self-similarity exponent, Physical Review E, Volume 84 (2011) no. 2 | DOI:10.1103/physreve.84.021109
- The Rosenblatt Process, Selected Works of Murray Rosenblatt (2011), p. 29 | DOI:10.1007/978-1-4419-8339-8_6
- Maximum-likelihood estimators and random walks in long memory models, Statistics, Volume 45 (2011) no. 4, p. 361 | DOI:10.1080/02331881003768750
- Noncentral Limit Theorem for the Cubic Variation of a Class of Self-Similar Stochastic Processes, Theory of Probability Its Applications, Volume 55 (2011) no. 3, p. 411 | DOI:10.1137/s0040585x97984978
- Central and non-central limit theorems for weighted power variations of fractional Brownian motion, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 46 (2010) no. 4 | DOI:10.1214/09-aihp342
- Hausdorff and packing dimensions of the images of random fields, Bernoulli, Volume 16 (2010) no. 4 | DOI:10.3150/09-bej244
- Regularization and integral representations of Hermite processes, Statistics Probability Letters, Volume 80 (2010) no. 23-24, p. 2014 | DOI:10.1016/j.spl.2010.09.008
- A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter, Stochastic Processes and their Applications, Volume 120 (2010) no. 12, p. 2331 | DOI:10.1016/j.spa.2010.08.003
- Noncentral limit theorem for the cubic variation of a class of self-similar stochastic processes, Теория вероятностей и ее применения, Volume 55 (2010) no. 3, p. 507 | DOI:10.4213/tvp4239
- Variations and Hurst index estimation for a Rosenblatt process using longer filters, Electronic Journal of Statistics, Volume 3 (2009) no. none | DOI:10.1214/09-ejs423
- Donsker Type Theorem for the Rosenblatt Process and a Binary Market Model, Stochastic Analysis and Applications, Volume 27 (2009) no. 3, p. 555 | DOI:10.1080/07362990902844371
- Variations and estimators for self-similarity parameters via Malliavin calculus, The Annals of Probability, Volume 37 (2009) no. 6 | DOI:10.1214/09-aop459
Cité par 142 documents. Sources : Crossref