How many bins should be put in a regular histogram
ESAIM: Probability and Statistics, Tome 10 (2006), pp. 24-45.

Given an n-sample from some unknown density f on [0,1], it is easy to construct an histogram of the data based on some given partition of [0,1], but not so much is known about an optimal choice of the partition, especially when the data set is not large, even if one restricts to partitions into intervals of equal length. Existing methods are either rules of thumbs or based on asymptotic considerations and often involve some smoothness properties of f. Our purpose in this paper is to give an automatic, easy to program and efficient method to choose the number of bins of the partition from the data. It is based on bounds on the risk of penalized maximum likelihood estimators due to Castellan and heavy simulations which allowed us to optimize the form of the penalty function. These simulations show that the method works quite well for sample sizes as small as 25.

DOI : 10.1051/ps:2006001
Classification : 62E25, 62G05
Mots-clés : regular histograms, density estimation, penalized maximum likelihood, model selection
@article{PS_2006__10__24_0,
     author = {Birg\'e, Lucien and Rozenholc, Yves},
     title = {How many bins should be put in a regular histogram},
     journal = {ESAIM: Probability and Statistics},
     pages = {24--45},
     publisher = {EDP-Sciences},
     volume = {10},
     year = {2006},
     doi = {10.1051/ps:2006001},
     mrnumber = {2197101},
     zbl = {1136.62329},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps:2006001/}
}
TY  - JOUR
AU  - Birgé, Lucien
AU  - Rozenholc, Yves
TI  - How many bins should be put in a regular histogram
JO  - ESAIM: Probability and Statistics
PY  - 2006
SP  - 24
EP  - 45
VL  - 10
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps:2006001/
DO  - 10.1051/ps:2006001
LA  - en
ID  - PS_2006__10__24_0
ER  - 
%0 Journal Article
%A Birgé, Lucien
%A Rozenholc, Yves
%T How many bins should be put in a regular histogram
%J ESAIM: Probability and Statistics
%D 2006
%P 24-45
%V 10
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps:2006001/
%R 10.1051/ps:2006001
%G en
%F PS_2006__10__24_0
Birgé, Lucien; Rozenholc, Yves. How many bins should be put in a regular histogram. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 24-45. doi : 10.1051/ps:2006001. https://www.numdam.org/articles/10.1051/ps:2006001/

[1] H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control 19 (1974) 716-723. | Zbl

[2] A.R. Barron, L. Birgé and P. Massart. Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301-415. | Zbl

[3] L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, D. Pollard, E. Torgersen and G. Yang, Eds., Springer-Verlag, New York (1997) 55-87. | Zbl

[4] L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc. 3 (2001) 203-268. | Zbl

[5] G. Castellan, Modified Akaike's criterion for histogram density estimation. Technical Report. Université Paris-Sud, Orsay (1999).

[6] G. Castellan, Sélection d'histogrammes à l'aide d'un critère de type Akaike. CRAS 330 (2000) 729-732. | Zbl

[7] J. Daly, The construction of optimal histograms. Commun. Stat., Theory Methods 17 (1988) 2921-2931. | Zbl

[8] L. Devroye, A Course in Density Estimation. Birkhäuser, Boston (1987). | MR | Zbl

[9] L. Devroye, and L. Györfi, Nonparametric Density Estimation: The L1 View. John Wiley, New York (1985). | MR | Zbl

[10] L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation. Springer-Verlag, New York (2001). | MR | Zbl

[11] D. Freedman and P. Diaconis, On the histogram as a density estimator: L2 theory. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57 (1981) 453-476. | Zbl

[12] P. Hall, Akaike's information criterion and Kullback-Leibler loss for histogram density estimation. Probab. Theory Relat. Fields 85 (1990) 449-467. | Zbl

[13] P. Hall and E.J. Hannan, On stochastic complexity and nonparametric density estimation. Biometrika 75 (1988) 705-714. | Zbl

[14] K. He and G. Meeden, Selecting the number of bins in a histogram: A decision theoretic approach. J. Stat. Plann. Inference 61 (1997) 49-59. | Zbl

[15] D.R.M. Herrick, G.P. Nason and B.W. Silverman, Some new methods for wavelet density estimation. Sankhya, Series A 63 (2001) 394-411.

[16] M.C. Jones, On two recent papers of Y. Kanazawa. Statist. Probab. Lett. 24 (1995) 269-271. | Zbl

[17] Y. Kanazawa, Hellinger distance and Akaike's information criterion for the histogram. Statist. Probab. Lett. 17 (1993) 293-298. | Zbl

[18] L.M. Le Cam, Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York (1986). | MR | Zbl

[19] L.M. Le Cam and G.L. Yang, Asymptotics in Statistics: Some Basic Concepts. Second Edition. Springer-Verlag, New York (2000). | MR | Zbl

[20] J. Rissanen, Stochastic complexity and the MDL principle. Econ. Rev. 6 (1987) 85-102. | Zbl

[21] M. Rudemo, Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9 (1982) 65-78. | Zbl

[22] D.W. Scott, On optimal and databased histograms. Biometrika 66 (1979) 605-610. | Zbl

[23] H.A. Sturges, The choice of a class interval. J. Am. Stat. Assoc. 21 (1926) 65-66.

[24] C.C. Taylor, Akaike's information criterion and the histogram. Biometrika. 74 (1987) 636-639. | Zbl

[25] G.R. Terrell, The maximal smoothing principle in density estimation. J. Am. Stat. Assoc. 85 (1990) 470-477.

[26] M.P. Wand, Data-based choice of histogram bin width. Am. Statistician 51 (1997) 59-64.

  • Mohammed, Mohammed Bappah; Baba, Ishaq Abdullahi; Salihu, Hauwa Danjuma; Ibrahim, Isah Abubakar New class width rule for continuous frequency tables, Results in Control and Optimization, Volume 18 (2025), p. 100506 | DOI:10.1016/j.rico.2024.100506
  • Zhu, ZhaoWei; Chen, Zhu; Gui, Ning; Xu, JiaWei; Lei, Yun; Li, DongDong, 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2024), p. 3409 | DOI:10.1109/smc54092.2024.10831892
  • Najafi, Pejman; Cheng, Feng; Meinel, Christoph HEOD: Human-assisted Ensemble Outlier Detection for cybersecurity, Computers Security, Volume 146 (2024), p. 104040 | DOI:10.1016/j.cose.2024.104040
  • Sobieczky, Florian; Sobieczky, Elisabeth Knowledge Guided Clustering Medieval Polychromy, Database and Expert Systems Applications - DEXA 2024 Workshops, Volume 2169 (2024), p. 115 | DOI:10.1007/978-3-031-68302-2_10
  • Li, Danlei; Nair, Nirmal; Wang, Kevin I-Kai Unsupervised Time Series Anomaly Detection for Edge Computing Applications: A Review, IoT Edge Intelligence (2024), p. 173 | DOI:10.1007/978-3-031-58388-9_6
  • Iqbal Basheer, Muhammad Yunus; Mohd Ali, Azliza; Abdul Hamid, Nurzeatul Hamimah; Mohd Ariffin, Muhammad Azizi; Osman, Rozianawaty; Nordin, Sharifalillah; Gu, Xiaowei Autonomous anomaly detection for streaming data, Knowledge-Based Systems, Volume 284 (2024), p. 111235 | DOI:10.1016/j.knosys.2023.111235
  • Gokmen, Sahika; Lyhagen, Johan; Ng, Kok Haur The performance of restricted AIC for irregular histogram models, PLOS ONE, Volume 19 (2024) no. 5, p. e0289822 | DOI:10.1371/journal.pone.0289822
  • Gunji, Hiroshi; Miura, Kazuki Do reserve requirements restrict bank behavior?, Review of Financial Economics (2024) | DOI:10.1002/rfe.1225
  • Zelaya Mendizábal, Valentina; Boullé, Marc; Rossi, Fabrice Fast and fully-automated histograms for large-scale data sets, Computational Statistics Data Analysis, Volume 180 (2023), p. 107668 | DOI:10.1016/j.csda.2022.107668
  • Ntroumpogiannis, Antonios; Giannoulis, Michail; Myrtakis, Nikolaos; Christophides, Vassilis; Simon, Eric; Tsamardinos, Ioannis A meta-level analysis of online anomaly detectors, The VLDB Journal, Volume 32 (2023) no. 4, p. 845 | DOI:10.1007/s00778-022-00773-x
  • Dai, Zhenxue; Ma, Ziqi; Zhang, Xiaoying; Chen, Junjun; Ershadnia, Reza; Luan, Xiaoyan; Soltanian, Mohamad Reza An integrated experimental design framework for optimizing solute transport monitoring locations in heterogeneous sedimentary media, Journal of Hydrology, Volume 614 (2022), p. 128541 | DOI:10.1016/j.jhydrol.2022.128541
  • Grigorev, Veniamin; Tinkov, Oleg; Grigoreva, Ludmila; Rasdolsky, Alexander Structural fractal analysis of the active sites of acetylcholinesterase from various organisms, Journal of Molecular Graphics and Modelling, Volume 116 (2022), p. 108265 | DOI:10.1016/j.jmgm.2022.108265
  • Sahann, Raphael; Muller, Torsten; Schmidt, Johanna, 2021 IEEE Visualization Conference (VIS) (2021), p. 66 | DOI:10.1109/vis49827.2021.9623301
  • Perez‐Alvarez, Ricardo; Grab, Heather; Polyakov, Anthony; Poveda, Katja Landscape composition mediates the relationship between predator body size and pest control, Ecological Applications, Volume 31 (2021) no. 6 | DOI:10.1002/eap.2365
  • Saumard, Adrien; Navarro, Fabien Finite Sample Improvement of Akaike’s Information Criterion, IEEE Transactions on Information Theory, Volume 67 (2021) no. 10, p. 6328 | DOI:10.1109/tit.2021.3094770
  • Gunji, Hiroshi; Miura, Kazuki Do Reserve Requirements Restrict Bank Behavior?, SSRN Electronic Journal (2021) | DOI:10.2139/ssrn.3939297
  • Li, Housen; Munk, Axel; Sieling, Hannes; Walther, Guenther The essential histogram, Biometrika, Volume 107 (2020) no. 2, p. 347 | DOI:10.1093/biomet/asz081
  • Sapritsky, Victor; Prokhorov, Alexander Essentials of Optical Radiation Metrology, Blackbody Radiometry (2020), p. 43 | DOI:10.1007/978-3-030-57789-6_2
  • Bertin, Karine; Klutchnikoff, Nicolas; Léon, Jose R.; Prieur, Clémentine Adaptive density estimation on bounded domains under mixing conditions, Electronic Journal of Statistics, Volume 14 (2020) no. 1 | DOI:10.1214/20-ejs1682
  • Ding, Zhiguo; Xing, Liudong Improved software defect prediction using Pruned Histogram-based isolation forest, Reliability Engineering System Safety, Volume 204 (2020), p. 107170 | DOI:10.1016/j.ress.2020.107170
  • Muhammed, Thaha; Mehmood, Rashid; Albeshri, Aiiad; Katib, Iyad SURAA: A Novel Method and Tool for Loadbalanced and Coalesced SpMV Computations on GPUs, Applied Sciences, Volume 9 (2019) no. 5, p. 947 | DOI:10.3390/app9050947
  • Zemicheal, Tadesse; Dietterich, Thomas G., Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies (2019), p. 65 | DOI:10.1145/3314344.3332490
  • Xie, Xinwen; Carré, Philippe; Perrine, Clency; Pousset, Yannis; Zhou, Nanrun; Wu, Jianhua Reduced-reference image quality metric based on statistic model in complex wavelet transform domain, Signal Processing: Image Communication, Volume 74 (2019), p. 218 | DOI:10.1016/j.image.2019.02.006
  • Willmott, Geoff R. Tunable Resistive Pulse Sensing: Better Size and Charge Measurements for Submicrometer Colloids, Analytical Chemistry, Volume 90 (2018) no. 5, p. 2987 | DOI:10.1021/acs.analchem.7b05106
  • Mai, Son T.; Amer-Yahia, Sihem; Bailly, Sébastien; Pépin, Jean-Louis; Chouakria, Ahlame Douzal; Nguyen, Ky T.; Nguyen, Anh-Duong Evolutionary Active Constrained Clustering for Obstructive Sleep Apnea Analysis, Data Science and Engineering, Volume 3 (2018) no. 4, p. 359 | DOI:10.1007/s41019-018-0080-6
  • Mai, Son T.; Amer-Yahia, Sihem; Chouakria, Ahlame Douzal; Nguyen, Ky T.; Nguyen, Anh-Duong Scalable Active Constrained Clustering for Temporal Data, Database Systems for Advanced Applications, Volume 10827 (2018), p. 566 | DOI:10.1007/978-3-319-91452-7_37
  • Bagheri, Hossein; Schmitt, Michael; Zhu, Xiao Xiang Fusion of TanDEM-X and Cartosat-1 elevation data supported by neural network-predicted weight maps, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 144 (2018), p. 285 | DOI:10.1016/j.isprsjprs.2018.07.007
  • Böhmer, Kristof; Rinderle-Ma, Stefanie Probability Based Heuristic for Predictive Business Process Monitoring, On the Move to Meaningful Internet Systems. OTM 2018 Conferences, Volume 11229 (2018), p. 78 | DOI:10.1007/978-3-030-02610-3_5
  • Garcia, Johan; Korhonen, Topi, Proceedings of the 2018 Workshop on Network Meets AI ML - NetAI'18 (2018), p. 21 | DOI:10.1145/3229543.3229548
  • Calcagnì, Antonio; Lombardi, Luigi; Sulpizio, Simone Analyzing spatial data from mouse tracker methodology: An entropic approach, Behavior Research Methods, Volume 49 (2017) no. 6, p. 2012 | DOI:10.3758/s13428-016-0839-5
  • Yavuz, Utku S.; Negro, Francesco; Diedrichs, Robin; Türker, Kemal S.; Farina, Dario Reflex Circuitry Originating from the Muscle Spindles to the Tibialis Anterior Muscle, Converging Clinical and Engineering Research on Neurorehabilitation II, Volume 15 (2017), p. 177 | DOI:10.1007/978-3-319-46669-9_32
  • Guisande, Cástor; García-Roselló, Emilio; Heine, Jürgen; González-Dacosta, Jacinto; Vilas, Luis González; García Pérez, Baltasar J.; Lobo, Jorge M. SPEDInstabR: An algorithm based on a fluctuation index for selecting predictors in species distribution modeling, Ecological Informatics, Volume 37 (2017), p. 18 | DOI:10.1016/j.ecoinf.2016.11.004
  • St-Pierre, Louis; Sari, Yuksel Asli; Kumral, Mustafa Creation of Histograms for Data in Various Mineral Resource and Engineering Problems: A Review of Existing Methods and a Proposed New Method to Define Bin Number, Natural Resources Research, Volume 26 (2017) no. 2, p. 201 | DOI:10.1007/s11053-016-9309-0
  • Moreira-Matias, Luís; Gama, João; Ferreira, Michel; Mendes-Moreira, João; Damas, Luis Time-evolving O-D matrix estimation using high-speed GPS data streams, Expert Systems with Applications, Volume 44 (2016), p. 275 | DOI:10.1016/j.eswa.2015.08.048
  • Pevný, Tomáš Loda: Lightweight on-line detector of anomalies, Machine Learning, Volume 102 (2016) no. 2, p. 275 | DOI:10.1007/s10994-015-5521-0
  • Parak, Wolfgang J.; Osinski, Marek; Liang, Xing-Jie; Bogomolny, Evgeny; Hong, Jiwon; Blenkiron, Cherie; Simonov, Denis; Dauros, Priscila; Swift, Simon; Phillips, Anthony; Willmott, Geoff R., Colloidal Nanoparticles for Biomedical Applications X, Volume 9338 (2015), p. 93381K | DOI:10.1117/12.2078377
  • Manté, Claude Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree, Computational Statistics Data Analysis, Volume 84 (2015), p. 68 | DOI:10.1016/j.csda.2014.11.003
  • Ding, Zhiguo; Fei, Minrui; Du, Dajun An online anomaly detection method for stream data using isolation principle and statistic histogram, International Journal of Modeling, Simulation, and Scientific Computing, Volume 06 (2015) no. 02, p. 1550017 | DOI:10.1142/s1793962315500178
  • Yavuz, Utku Ş.; Negro, Francesco; Sebik, Oğuz; Holobar, Aleŝ; Frömmel, Cornelius; Türker, Kemal S.; Farina, Dario Estimating reflex responses in large populations of motor units by decomposition of the high‐density surface electromyogram, The Journal of Physiology, Volume 593 (2015) no. 19, p. 4305 | DOI:10.1113/jp270635
  • Reel, Parminder Singh; Dooley, Laurence S.; Wong, K. C. P; Borner, Anko, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), p. 6632 | DOI:10.1109/icassp.2014.6854883
  • Soubdhan, Ted; Abadi, Mohamed; Emilion, Richard Time Dependent Classification of Solar Radiation Sequences Using Best Information Criterion, Energy Procedia, Volume 57 (2014), p. 1309 | DOI:10.1016/j.egypro.2014.10.121
  • Munoz, Max O.; Foster, Robert; Hao, Yang Exploring Physiological Parameters in Dynamic WBAN Channels, IEEE Transactions on Antennas and Propagation, Volume 62 (2014) no. 10, p. 5268 | DOI:10.1109/tap.2014.2342751
  • Chen, Songhang; Zhu, Fenghua; Cao, Jianping Growing Spatially Embedded Social Networks for Activity-Travel Analysis Based on Artificial Transportation Systems, IEEE Transactions on Intelligent Transportation Systems, Volume 15 (2014) no. 5, p. 2111 | DOI:10.1109/tits.2014.2308975
  • Birgé, Lucien Model selection for density estimation with L2-loss, Probability Theory and Related Fields, Volume 158 (2014) no. 3-4, p. 533 | DOI:10.1007/s00440-013-0488-x
  • Celisse, Alain Optimal cross-validation in density estimation with the L2-loss, The Annals of Statistics, Volume 42 (2014) no. 5 | DOI:10.1214/14-aos1240
  • Sainudiin, Raazesh; Teng, Gloria; Harlow, Jennifer; Lee, Dominic Posterior Expectation of Regularly Paved Random Histograms, ACM Transactions on Modeling and Computer Simulation, Volume 23 (2013) no. 1, p. 1 | DOI:10.1145/2414416.2414422
  • Campidelli, M.; Razaqpur, A.G.; Foo, S. Reliability-based load factors for blast design, Canadian Journal of Civil Engineering, Volume 40 (2013) no. 5, p. 461 | DOI:10.1139/cjce-2011-0411
  • Maslove, D. M.; Podchiyska, T.; Lowe, H. J. Discretization of continuous features in clinical datasets, Journal of the American Medical Informatics Association, Volume 20 (2013) no. 3, p. 544 | DOI:10.1136/amiajnl-2012-000929
  • Li, Chao; Singh, Vijay P.; Mishra, Ashok K. Entropy theory‐based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy, Water Resources Research, Volume 48 (2012) no. 5 | DOI:10.1029/2011wr011251
  • Abadi, Mohamed; Alata, Olivier; Olivier, Christian; Khoudeir, Majdi; Grandchamp, Enguerran, 2011 4th International Congress on Image and Signal Processing (2011), p. 919 | DOI:10.1109/cisp.2011.6100275
  • Kumar, Pankaj, 2011 International Conference on Digital Image Computing: Techniques and Applications (2011), p. 410 | DOI:10.1109/dicta.2011.76
  • Reynaud-Bouret, Patricia; Rivoirard, Vincent; Tuleau-Malot, Christine Adaptive density estimation: A curse of support?, Journal of Statistical Planning and Inference, Volume 141 (2011) no. 1, p. 115 | DOI:10.1016/j.jspi.2010.05.017
  • Liang Li; Lingjiang Kong; Xiaobo Yang, Proceedings of 2011 IEEE CIE International Conference on Radar (2011), p. 1288 | DOI:10.1109/cie-radar.2011.6159792
  • Pereira, Carlos; Coq, Guilhem; Li, Xiang; Pousset, Yannis; Olivier, Christian; Alata, Olivier; Vauzelle, Rodolphe; Arnaudon, Marc; Combeau, Pierre Application of information criteria for the selection of the statistical small scale fading model of the radio mobile channel, AEU - International Journal of Electronics and Communications, Volume 64 (2010) no. 6, p. 521 | DOI:10.1016/j.aeue.2009.03.005
  • Rozenholc, Yves; Mildenberger, Thoralf; Gather, Ursula Combining regular and irregular histograms by penalized likelihood, Computational Statistics Data Analysis, Volume 54 (2010) no. 12, p. 3313 | DOI:10.1016/j.csda.2010.04.021
  • Picard, Nicolas; Ouédraogo, Dakis; Bar-Hen, Avner Choosing classes for size projection matrix models, Ecological Modelling, Volume 221 (2010) no. 19, p. 2270 | DOI:10.1016/j.ecolmodel.2010.06.010
  • Petsa, Athanasia; Sapatinas, Theofanis Adaptive quadratic functional estimation of a weighted density by model selection, Statistics, Volume 44 (2010) no. 6, p. 571 | DOI:10.1080/02331880903237114
  • Coq, G.; Li, X.; Alata, O.; Pousset, Y.; Olivier, C., 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (2009), p. 3425 | DOI:10.1109/icassp.2009.4960361
  • Davies, Laurie; Gather, Ursula; Nordman, Dan; Weinert, Henrike A comparison of automatic histogram constructions, ESAIM: Probability and Statistics, Volume 13 (2009), p. 181 | DOI:10.1051/ps:2008005
  • Sauvé, Marie Histogram selection in non Gaussian regression, ESAIM: Probability and Statistics, Volume 13 (2009), p. 70 | DOI:10.1051/ps:2008002
  • Brunel, Elodie; Comte, Fabienne Cumulative distribution function estimation under interval censoring case 1, Electronic Journal of Statistics, Volume 3 (2009) no. none | DOI:10.1214/08-ejs209
  • Baraud, Yannick; Birgé, Lucien Estimating the intensity of a random measure by histogram type estimators, Probability Theory and Related Fields, Volume 143 (2009) no. 1-2, p. 239 | DOI:10.1007/s00440-007-0126-6
  • Brunel, E.; Comte, F.; Guilloux, A. Nonparametric density estimation in presence of bias and censoring, TEST, Volume 18 (2009) no. 1, p. 166 | DOI:10.1007/s11749-007-0075-5
  • Comte, F.; Dedecker, J.; Taupin, M.L. ADAPTIVE DENSITY ESTIMATION FOR GENERAL ARCH MODELS, Econometric Theory, Volume 24 (2008) no. 6, p. 1628 | DOI:10.1017/s026646660808064x
  • Comte, F.; Rozenholc, Y.; Taupin, M.-L. Finite sample penalization in adaptive density deconvolution, Journal of Statistical Computation and Simulation, Volume 77 (2007) no. 11, p. 977 | DOI:10.1080/10629360600831711
  • Comte, Fabienne; Rozenholc, Yves; Taupin, Marie‐Luce Penalized contrast estimator for adaptive density deconvolution, Canadian Journal of Statistics, Volume 34 (2006) no. 3, p. 431 | DOI:10.1002/cjs.5550340305
  • Birgé, Lucien Statistical estimation with model selection, Indagationes Mathematicae, Volume 17 (2006) no. 4, p. 497 | DOI:10.1016/s0019-3577(07)00004-3
  • Jacquot, A.; Sturm, P.; Ruch, O., 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1 (2005), p. 103 | DOI:10.1109/acvmot.2005.19
  • Gauchi, Jean‐Pierre; Leblanc, Jean‐Charles Quantitative Assessment of Exposure to the Mycotoxin Ochratoxin A in Food, Risk Analysis, Volume 22 (2002) no. 2, p. 219 | DOI:10.1111/0272-4332.00021

Cité par 69 documents. Sources : Crossref