Goodness of fit test for isotonic regression
ESAIM: Probability and Statistics, Tome 5 (2001), pp. 119-140.

We consider the problem of hypothesis testing within a monotone regression model. We propose a new test of the hypothesis H0: “f=f0” against the composite alternative Ha: “ff0” under the assumption that the true regression function f is decreasing. The test statistic is based on the 𝕃1-distance between the isotonic estimator of f and the function f0, since it is known that a properly centered and normalized version of this distance is asymptotically standard normally distributed under H0. We study the asymptotic power of the test under alternatives that converge to the null hypothesis.

Classification : 62G08, 62G10, 62G20
Mots-clés : nonparametric regression, isotonic estimator, goodness of fit test, asymptotic power
@article{PS_2001__5__119_0,
     author = {Durot, C\'ecile and Tocquet, Anne-Sophie},
     title = {Goodness of fit test for isotonic regression},
     journal = {ESAIM: Probability and Statistics},
     pages = {119--140},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2001},
     mrnumber = {1875667},
     zbl = {0990.62041},
     language = {en},
     url = {https://www.numdam.org/item/PS_2001__5__119_0/}
}
TY  - JOUR
AU  - Durot, Cécile
AU  - Tocquet, Anne-Sophie
TI  - Goodness of fit test for isotonic regression
JO  - ESAIM: Probability and Statistics
PY  - 2001
SP  - 119
EP  - 140
VL  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/item/PS_2001__5__119_0/
LA  - en
ID  - PS_2001__5__119_0
ER  - 
%0 Journal Article
%A Durot, Cécile
%A Tocquet, Anne-Sophie
%T Goodness of fit test for isotonic regression
%J ESAIM: Probability and Statistics
%D 2001
%P 119-140
%V 5
%I EDP-Sciences
%U https://www.numdam.org/item/PS_2001__5__119_0/
%G en
%F PS_2001__5__119_0
Durot, Cécile; Tocquet, Anne-Sophie. Goodness of fit test for isotonic regression. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 119-140. https://www.numdam.org/item/PS_2001__5__119_0/

[1] R.E. Barlow, D.J. Bartholomew, J.M. Bremmer and H.D. Brunk, Statistical Inference under Order Restrictions. Wiley (1972). | Zbl

[2] D. Barry and J.A. Hartigan, An omnibus test for departures from constant mean. Ann. Statist. 18 (1990) 1340-1357. | MR | Zbl

[3] H.D. Brunk, On the estimation of parameters restricted by inequalities. Ann. Math. Statist. (1958) 437-454. | MR | Zbl

[4] C. Durot, Sharp asymptotics for isotonic regression. Probab. Theory Relat. Fields (to appear). | MR | Zbl

[5] R.L. Eubank and J.D. Hart, Testing goodness of fit in regression via order selection criteria. Ann. Statist. 20 (1992) 1412-1425. | MR | Zbl

[6] R.L. Eubank and C.H. Spiegelman, Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85 (1990) 387-392. | MR | Zbl

[7] P. Groeneboom, Estimating a monotone density, edited by R.A. Olsen and L. Le Cam, in Proc. of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. 2. Wadsworth (1985) 539-554. | MR

[8] P. Groeneboom, Brownian motion with parabolic drift and airy functions. Probab. Theory Relat. Fields (1989) 79-109. | MR

[9] P. Hall, J.W. Kay and D.M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 (1990) 521-528. | MR

[10] W. Härdle and E. Mammen, Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 (1993) 1926-1947. | MR | Zbl

[11] J.D. Hart and T.E. Wehrly, Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models. J. Amer. Statist. Assoc. 87 (1992) 1018-1024. | MR | Zbl

[12] L. Reboul, Estimation of a function under shape restrictions. Applications to reliability, Preprint. Université Paris XI, Orsay (1997). | MR | Zbl

[13] D. Revuz and M. Yor, Continuous martingales and Brownian Motion. Springer-Verlag (1991). | MR | Zbl

[14] J. Rice, Bandwidth choice for nonparametric regression. Ann. Statist. 4 (1984) 1215-1230. | MR | Zbl

[15] H.P. Rosenthal, On the subspace of lp, p>2, spanned by sequences of independent random variables. Israel J. Math. 8 (1970) 273-303. | MR | Zbl

[16] A.I. Sakhanenko, Estimates in the variance principle. Trudy. Inst. Mat. Sibirsk. Otdel (1972) 27-44. | MR | Zbl

[17] J.G. Staniswalis and T.A. Severini, Diagnostics for assessing regression models. J. Amer. Statist. Assoc. 86 (1991) 684-692. | MR | Zbl

[18] W. Stute, Nonparametric model checks for regression. Ann. Statist. 15 (1997) 613-641. | MR | Zbl

[19] A.S. Tocquet, Construction et étude de tests en régression1998).