Nonabelian Hodge theory in characteristic p
Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 1-138.

Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.

@article{PMIHES_2007__106__1_0,
     author = {Ogus, A. and Vologodsky, V.},
     title = {Nonabelian {Hodge} theory in characteristic $p$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--138},
     publisher = {Springer},
     volume = {106},
     year = {2007},
     doi = {10.1007/s10240-007-0010-z},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-007-0010-z/}
}
TY  - JOUR
AU  - Ogus, A.
AU  - Vologodsky, V.
TI  - Nonabelian Hodge theory in characteristic $p$
JO  - Publications Mathématiques de l'IHÉS
PY  - 2007
SP  - 1
EP  - 138
VL  - 106
PB  - Springer
UR  - https://www.numdam.org/articles/10.1007/s10240-007-0010-z/
DO  - 10.1007/s10240-007-0010-z
LA  - en
ID  - PMIHES_2007__106__1_0
ER  - 
%0 Journal Article
%A Ogus, A.
%A Vologodsky, V.
%T Nonabelian Hodge theory in characteristic $p$
%J Publications Mathématiques de l'IHÉS
%D 2007
%P 1-138
%V 106
%I Springer
%U https://www.numdam.org/articles/10.1007/s10240-007-0010-z/
%R 10.1007/s10240-007-0010-z
%G en
%F PMIHES_2007__106__1_0
Ogus, A.; Vologodsky, V. Nonabelian Hodge theory in characteristic $p$. Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 1-138. doi : 10.1007/s10240-007-0010-z. https://www.numdam.org/articles/10.1007/s10240-007-0010-z/

1. A. Beilinson, On the derived category of perverse sheaves, in K-Theory, Arithmetic and Geometry (Moscow, 1984-1986), Lect. Notes Math., vol. 1289, Springer, Berlin Heidelberg New York, 1987. | MR | Zbl

2. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque, 100 (1982), 5-171 | MR | Zbl

3. P. Berthelot, A. Ogus, Notes on Crystalline Cohomology, Princeton University Press, Princeton, N.J. (1978) | MR | Zbl

4. R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple lie algebra in prime characteristic, Ann. Math., to appear, arXiv:math RT/0205144v5.

5. A. Braverman, R. Bezrukavnikov, Geometric Langlands correspondence for 𝒟-modules in prime characteristic: the Gl(n) case, Pure Appl. Math. Q., 3 (2007), 153-179 | MR

6. P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Springer, Berlin Heidelberg New York (1970) | MR | Zbl

7. P. Deligne, Théorie de Hodge II, Publ. Math., Inst. Hautes Étud. Sci., 40 (1972), 5-57 | Numdam | MR | Zbl

8. P. Deligne, L. Illusie, Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., 89 (1987), 247-270 | MR | Zbl

9. P. Deligne and J. Milne, Tannakian categories, in Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes Math., vol. 900, Springer, Berlin Heidelberg New York, 1982. | MR | Zbl

10. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, New York (1999) | MR | Zbl

11. G. Faltings, Crystalline cohomology and p-adic Galois representations, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, pp. 25-80, The Johns Hopkins University Press, Baltimore London, 1989. | MR | Zbl

12. G. Faltings, Crystalline cohomology of semistable curve - the Qp -theory, J. Algebr. Geom., 6 (1997), 1-18 | MR | Zbl

13. A. Grothendieck, J. Dieudonné, Elements de géométrie algébrique: étude locale des schémas et des morphismes des schémas, Publ. Math., Inst. Hautes Étud. Sci., 24 (1964), 5-231 | Numdam | Zbl

14. A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Grundlehren der mathematischen Wissenschaften, vol. 166, Springer, 1971. | Zbl

15. L. Illusie, Complexe Cotangent et Déformations I, Springer, Berlin Heidelberg New York (1971) | MR | Zbl

16. K. Joshi, C.S. Rajan, Frobenius splitting and ordinarity, Int. Math. Res. Not., 2 (2003), 109-121 | MR | Zbl

17. K. Kato, Logarithmic structures of Fontaine-Illusie, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore London, 1989. | MR | Zbl

18. N. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Publ. Math., Inst. Hautes Étud. Sci., 39 (1970), 175-232 | Numdam | MR | Zbl

19. N. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118 | MR | Zbl

20. G. Laumon, Sur la catégorie dérivée des D-modules filtrées, in Algebraic Geometry (Tokyo-Kyoto), pp. 151-237, Springer, Berlin Heidelberg New York, 1983. | MR | Zbl

21. B. Mazur, Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 78 (1972), 653-667 | MR | Zbl

22. B. Mazur, W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, Springer, Berlin Heidelberg New York (1974) | MR | Zbl

23. J. Milne, Étale Cohomology, Princeton University Press, Princeton, N.J. (1980) | MR | Zbl

24. A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc., 9 (1996), 205-236 | Zbl

25. A. Neeman, Triangulated Categories, Princeton University Press, Princeton, N.J. (2001) | MR | Zbl

26. A. Ogus, F-crystals and Griffiths transversality. in Proceedings of the International Symposium on Algebraic Geometry, Kyoto 1977, pp. 15-44, Kinokuniya Book-Store, Co., Tokyo, 1977. | MR | Zbl

27. A. Ogus, Griffiths transversality in crystalline cohomology, Ann. Math., 108 (1978), 395-419 | MR | Zbl

28. A. Ogus, F-Crystals, Griffiths Transversality, and the Hodge Decomposition, Astérisque, vol. 221, Soc. Math. France, 1994. | MR | Zbl

29. A. Ogus, Higgs cohomology, p-curvature, and the Cartier isomorphism, Compos. Math., 140 (2004), 145-164 | MR | Zbl

30. B. Osserman, Mochizuki's crys-stable bundles: a lexicon and applications, RIMS Kokyuroku, 43 (2007), 95-119

31. M. Raynaud, p-torsion” du schéma de Picard, Astérisque, 64 (1978), 87-149 | Numdam | Zbl

32. N. S. Rivano, Catégories Tannakiennes, Lect. Notes Math., vol. 265, Springer, 1972. | MR

33. N. Roby, Lois polynômes et lois formelles en théorie des modules, Ann. Éc. Norm. Super., III. Sér., 80 (1963), 213-348 | Numdam | MR | Zbl

34. C. Sabbah, On a twisted de Rham complex, Tohoku Math. J., 51 (1999), 125-140 | MR | Zbl

35. M. Saito, Hodge structure via filtered D-modules, Astérisque, 130 (1985), 342-351 | Numdam | MR | Zbl

36. C. Simpson, Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., 75 (1992), 5-95 | Numdam | MR | Zbl

37. V. Srinivas, Decomposition of the de Rham complex, Proc. Indian Acad. Sci., Math. Sci., 100 (1990), 103-106 | MR | Zbl

38. V. Voevodsky, Homotopy theory of simplicial sheaves in completely decomposable topologies, http://www.math.uiuc.edu/K-theory/443, 2000.

  • Anschütz, Johannes; Heuer, Ben; Le Bras, Arthur-César Hodge–Tate stacks and non-abelian 𝑝-adic Hodge theory of v-perfect complexes on rigid spaces, Journal für die reine und angewandte Mathematik (Crelles Journal) (2025) | DOI:10.1515/crelle-2024-0097
  • Wakabayashi, Yasuhiro The generic étaleness of the moduli space of dormant so2ℓ-opers, Journal of Geometry and Physics, Volume 211 (2025), p. 105439 | DOI:10.1016/j.geomphys.2025.105439
  • Esnault, Hélène; Groechenig, Michael Crystallinity of rigid flat connections revisited, Selecta Mathematica, Volume 31 (2025) no. 1 | DOI:10.1007/s00029-024-00995-7
  • Min, Yu; Wang, Yupeng Integral p-adic non-abelian Hodge theory for small representations, Advances in Mathematics, Volume 458 (2024), p. 109950 | DOI:10.1016/j.aim.2024.109950
  • Bogdanova, Ekaterina; Vologodsky, Vadim On the Bezrukavnikov–Kaledin quantization of symplectic varieties in characteristic p, Compositio Mathematica, Volume 160 (2024) no. 2, p. 411 | DOI:10.1112/s0010437x23007601
  • Krishnamoorthy, Raju; Sheng, Mao Periodicity of Hitchin’s Uniformizing Higgs Bundles, International Mathematics Research Notices, Volume 2024 (2024) no. 11, p. 9440 | DOI:10.1093/imrn/rnae042
  • Shen, Shiyu Tamely Ramified Geometric Langlands Correspondence in Positive Characteristic, International Mathematics Research Notices, Volume 2024 (2024) no. 7, p. 6176 | DOI:10.1093/imrn/rnae005
  • Langer, Adrian Bogomolov’s inequality and Higgs sheaves on normal varieties in positive characteristic, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2024) no. 0 | DOI:10.1515/crelle-2023-0101
  • de Cataldo, Mark Andrea; Herrero, Andres Fernandez; Zhang, Siqing Geometry of the logarithmic Hodge moduli space, Journal of the London Mathematical Society, Volume 109 (2024) no. 1 | DOI:10.1112/jlms.12857
  • Li, Shizhang; Zhang, Dingxin Exponentially twisted de Rham cohomology and rigid cohomology, Mathematische Annalen, Volume 390 (2024) no. 1, p. 639 | DOI:10.1007/s00208-023-02772-x
  • Jiang, Yunfeng; Kundu, Promit On the Bogomolov–Gieseker inequality for tame Deligne–Mumford surfaces, Mathematische Zeitschrift, Volume 306 (2024) no. 2 | DOI:10.1007/s00209-023-03421-4
  • Li, Mao; Sun, Hao Tame parahoric nonabelian Hodge correspondence in positive characteristic over algebraic curves, Selecta Mathematica, Volume 30 (2024) no. 4 | DOI:10.1007/s00029-024-00954-2
  • Wang, Yupeng A p-adic Simpson correspondence for rigid analytic varieties, Algebra Number Theory, Volume 17 (2023) no. 8, p. 1453 | DOI:10.2140/ant.2023.17.1453
  • Zhang, Zebao A Note on the Filtered Decomposition Theorem, Communications in Mathematics and Statistics, Volume 11 (2023) no. 3, p. 519 | DOI:10.1007/s40304-021-00262-7
  • Esnault, Hélène Lecture 9: Rigid Local Systems, Fontaine-Laffaille Modules and Crystalline Local Systems, Local Systems in Algebraic-Arithmetic Geometry, Volume 2337 (2023), p. 75 | DOI:10.1007/978-3-031-40840-3_9
  • Gros, Michel; Le Stum, Bernard; Quirós, Adolfo Cartier transform and prismatic crystals, Tunisian Journal of Mathematics, Volume 5 (2023) no. 3, p. 405 | DOI:10.2140/tunis.2023.5.405
  • Li, Si; Wen, Hao On the L2-Hodge theory of Landau-Ginzburg models, Advances in Mathematics, Volume 396 (2022), p. 108165 | DOI:10.1016/j.aim.2021.108165
  • Gros, Michel; Le Stum, Bernard; Quirós, Adolfo Twisted divided powers and applications, Journal of Number Theory, Volume 237 (2022), p. 285 | DOI:10.1016/j.jnt.2019.02.009
  • Kubrak, Dmitry; Travkin, Roman Resolutions With Conical Slices and Descent for the Brauer Group Classes of Certain Central Reductions of Differential Operators in Characteristicp, International Mathematics Research Notices, Volume 2021 (2021) no. 19, p. 14629 | DOI:10.1093/imrn/rnz169
  • Achinger, Piotr; Zdanowicz, Maciej Serre–Tate theory for Calabi–Yau varieties, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2021 (2021) no. 780, p. 139 | DOI:10.1515/crelle-2021-0041
  • Sheng, Mao; Tong, Jilong A note on Higgs-de Rham flows of level zero, Science China Mathematics, Volume 64 (2021) no. 2, p. 307 | DOI:10.1007/s11425-020-1782-x
  • Halpern-Leistner, Daniel; Pomerleano, Daniel Equivariant Hodge theory and noncommutative geometry, Geometry Topology, Volume 24 (2020) no. 5, p. 2361 | DOI:10.2140/gt.2020.24.2361
  • Groechenig, Michael; Wyss, Dimitri; Ziegler, Paul Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration, Inventiones mathematicae, Volume 221 (2020) no. 2, p. 505 | DOI:10.1007/s00222-020-00957-8
  • Hablicsek, Márton Hodge theorem for the logarithmic de Rham complex via derived intersections, Research in the Mathematical Sciences, Volume 7 (2020) no. 3 | DOI:10.1007/s40687-020-00222-7
  • Huang, Pengfei Non-Abelian Hodge Theory and Related Topics, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 16 (2020) | DOI:10.3842/sigma.2020.029
  • Gros, Michel Sur une q-déformation locale de la théorie de Hodge non-abélienne en caractéristique positive, p-adic Hodge Theory (2020), p. 143 | DOI:10.1007/978-3-030-43844-9_5
  • Xu, Daxin On higher direct images of convergent isocrystals, Compositio Mathematica, Volume 155 (2019) no. 11, p. 2180 | DOI:10.1112/s0010437x19007590
  • Bitoun, Thomas On the p-supports of a holonomic D D -module, Inventiones mathematicae, Volume 215 (2019) no. 3, p. 779 | DOI:10.1007/s00222-018-0837-6
  • Lan, Guitang; Sheng, Mao; Yang, Yanhong; Zuo, Kang Uniformization of p-adic curves via Higgs–de Rham flows, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 747, p. 63 | DOI:10.1515/crelle-2016-0020
  • Arapura, Donu Kodaira–Saito vanishing via Higgs bundles in positive characteristic, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 755, p. 293 | DOI:10.1515/crelle-2017-0036
  • Deninger, Christopher; Werner, Annette Parallel transport for vector bundles on 𝑝-adic varieties, Journal of Algebraic Geometry, Volume 29 (2019) no. 1, p. 1 | DOI:10.1090/jag/747
  • Illusie, Luc Pierre Deligne: A Poet of Arithmetic Geometry, The Abel Prize 2013-2017 (2019), p. 13 | DOI:10.1007/978-3-319-99028-6_2
  • Petrov, Alexander; Vaintrob, Dmitry; Vologodsky, Vadim The Gauss–Manin connection on the periodic cyclic homology, Selecta Mathematica, Volume 24 (2018) no. 1, p. 531 | DOI:10.1007/s00029-018-0388-0
  • Esnault, Hélène; Shiho, Atsushi Chern classes of crystals, Transactions of the American Mathematical Society, Volume 371 (2018) no. 2, p. 1333 | DOI:10.1090/tran/7342
  • Gross, Mark; Katzarkov, Ludmil; Ruddat, Helge Towards mirror symmetry for varieties of general type, Advances in Mathematics, Volume 308 (2017), p. 208 | DOI:10.1016/j.aim.2016.03.035
  • Chen, Tsao-Hsien; Zhu, Xinwen Geometric Langlands in prime characteristic, Compositio Mathematica, Volume 153 (2017) no. 2, p. 395 | DOI:10.1112/s0010437x16008113
  • Esnault, Hélène; Sabbah, Claude; Yu, Jeng-Daw E 1-degeneration of the irregular Hodge filtration, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2017 (2017) no. 729, p. 171 | DOI:10.1515/crelle-2014-0118
  • Langer, Adrian The Bogomolov–Miyaoka–Yau inequality for logarithmic surfaces in positive characteristic, Duke Mathematical Journal, Volume 165 (2016) no. 14 | DOI:10.1215/00127094-3627203
  • Ohkawa, Sachio On log local Cartier transform of higher level in characteristic p, Mathematische Zeitschrift, Volume 283 (2016) no. 3-4, p. 871 | DOI:10.1007/s00209-016-1625-x
  • Chen, Tsao-Hsien; Zhu, Xinwen Non-abelian Hodge theory for algebraic curves in characteristic p, Geometric and Functional Analysis, Volume 25 (2015) no. 6, p. 1706 | DOI:10.1007/s00039-015-0343-6
  • Sheng, Mao; Xin, He; Zuo, Kang A note on the characteristic p nonabelian Hodge theory in the geometric case, International Journal of Mathematics, Volume 26 (2015) no. 01, p. 1550011 | DOI:10.1142/s0129167x15500111
  • Langer, Adrian Bogomolov’s inequality for Higgs sheaves in positive characteristic, Inventiones mathematicae, Volume 199 (2015) no. 3, p. 889 | DOI:10.1007/s00222-014-0534-z
  • Gros, Michel; Le Stum, Bernard Une Neutralisation Explicite de L'algèbre de Weyl Quantique Complétée, Communications in Algebra, Volume 42 (2014) no. 5, p. 2163 | DOI:10.1080/00927872.2012.758267
  • LI, LINGGUANG ON A CONJECTURE OF LAN–SHENG–ZUO ON SEMISTABLE HIGGS BUNDLES: RANK 3 CASE, International Journal of Mathematics, Volume 25 (2014) no. 02, p. 1450013 | DOI:10.1142/s0129167x1450013x
  • Yu, Jeng-Daw Irregular Hodge filtration on twisted de Rham cohomology, Manuscripta Mathematica, Volume 144 (2014) no. 1-2, p. 99 | DOI:10.1007/s00229-013-0642-x
  • Katzarkov, Ludmil; Kontsevich, Maxim; Pantev, Tony Bogomolov-Tian-Todorov theorems for Landau-Ginzburg models, arXiv (2014) | DOI:10.48550/arxiv.1409.5996 | arXiv:1409.5996
  • Stadnik, Theodore J. Étale splittings of certain Azumaya algebras on toric and hypertoric varieties in positive characteristic, Advances in Mathematics, Volume 233 (2013) no. 1, p. 268 | DOI:10.1016/j.aim.2012.10.008
  • Sheng, Mao; Zhang, Jiajin; Zuo, Kang Higgs bundles over the good reduction of a quaternionic Shimura curve, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 671 | DOI:10.1515/crelle.2011.158
  • Kontsevich, Maxim Holonomic -modules and positive characteristic, Japanese Journal of Mathematics, Volume 4 (2009) no. 1, p. 1 | DOI:10.1007/s11537-009-0852-x
  • Lu, Jun; Sheng, Mao; Zuo, Kang An Arakelov inequality in characteristic p and upper bound of p-rank zero locus, Journal of Number Theory, Volume 129 (2009) no. 12, p. 3029 | DOI:10.1016/j.jnt.2009.05.015
  • Schwarz, A.; Shapiro, I. Twisted de Rham cohomology, homological definition of the integral and “Physics over a ring”, Nuclear Physics, Section B, Volume 809 (2009) no. 3, pp. 547-560 | DOI:10.1016/j.nuclphysb.2008.10.005
  • Nevins, Thomas Mirabolic Langlands duality and the quantum Calogero–Moser system, Transformation Groups, Volume 14 (2009) no. 4, p. 931 | DOI:10.1007/s00031-009-9068-7
  • Katzarkov, L.; Kontsevich, M.; Pantev, T. Hodge theoretic aspects of mirror symmetry, arXiv (2008) | DOI:10.48550/arxiv.0806.0107 | arXiv:0806.0107
  • Bezrukavnikov, Roman Noncommutative Counterparts of the Springer Resolution, arXiv (2006) | DOI:10.48550/arxiv.math/0604445 | arXiv:math/0604445
  • Bezrukavnikov, Roman; Braverman, Alexander Geometric Langlands correspondence for D-modules in prime characteristic: the GL(n) case, arXiv (2006) | DOI:10.48550/arxiv.math/0602255 | arXiv:math/0602255
  • Bezrukavnikov, Roman; Mirkovic, Ivan; Rumynin, Dmitry Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, arXiv (2006) | DOI:10.48550/arxiv.math/0602075 | arXiv:math/0602075
  • Belov-Kanel, Alexei; Kontsevich, Maxim Automorphisms of the Weyl Algebra, Letters in Mathematical Physics, Volume 74 (2005) no. 2, pp. 181-199 | DOI:10.1007/s11005-005-0027-5

Cité par 57 documents. Sources : Crossref, NASA ADS