Given a scheme in characteristic
@article{PMIHES_2007__106__1_0, author = {Ogus, A. and Vologodsky, V.}, title = {Nonabelian {Hodge} theory in characteristic $p$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--138}, publisher = {Springer}, volume = {106}, year = {2007}, doi = {10.1007/s10240-007-0010-z}, language = {en}, url = {https://www.numdam.org/articles/10.1007/s10240-007-0010-z/} }
TY - JOUR AU - Ogus, A. AU - Vologodsky, V. TI - Nonabelian Hodge theory in characteristic $p$ JO - Publications Mathématiques de l'IHÉS PY - 2007 SP - 1 EP - 138 VL - 106 PB - Springer UR - https://www.numdam.org/articles/10.1007/s10240-007-0010-z/ DO - 10.1007/s10240-007-0010-z LA - en ID - PMIHES_2007__106__1_0 ER -
Ogus, A.; Vologodsky, V. Nonabelian Hodge theory in characteristic $p$. Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 1-138. doi : 10.1007/s10240-007-0010-z. https://www.numdam.org/articles/10.1007/s10240-007-0010-z/
1. On the derived category of perverse sheaves, in K-Theory, Arithmetic and Geometry (Moscow, 1984-1986), Lect. Notes Math., vol. 1289, Springer, Berlin Heidelberg New York, 1987. | MR | Zbl
,2. Faisceaux pervers, Astérisque, 100 (1982), 5-171 | MR | Zbl
, , ,3. Notes on Crystalline Cohomology, Princeton University Press, Princeton, N.J. (1978) | MR | Zbl
, ,4. R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple lie algebra in prime characteristic, Ann. Math., to appear, arXiv:math RT/0205144v5.
5. Geometric Langlands correspondence for
6. Equations Différentielles à Points Singuliers Réguliers, Springer, Berlin Heidelberg New York (1970) | MR | Zbl
,7. Théorie de Hodge II, Publ. Math., Inst. Hautes Étud. Sci., 40 (1972), 5-57 | Numdam | MR | Zbl
,8. Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., 89 (1987), 247-270 | MR | Zbl
, ,9. Tannakian categories, in Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes Math., vol. 900, Springer, Berlin Heidelberg New York, 1982. | MR | Zbl
and ,10. Commutative Algebra with a View Toward Algebraic Geometry, Springer, New York (1999) | MR | Zbl
,11. Crystalline cohomology and p-adic Galois representations, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, pp. 25-80, The Johns Hopkins University Press, Baltimore London, 1989. | MR | Zbl
,12. Crystalline cohomology of semistable curve - the Qp -theory, J. Algebr. Geom., 6 (1997), 1-18 | MR | Zbl
,13. Elements de géométrie algébrique: étude locale des schémas et des morphismes des schémas, Publ. Math., Inst. Hautes Étud. Sci., 24 (1964), 5-231 | Numdam | Zbl
, ,14. Eléments de Géométrie Algébrique, Grundlehren der mathematischen Wissenschaften, vol. 166, Springer, 1971. | Zbl
and ,15. Complexe Cotangent et Déformations I, Springer, Berlin Heidelberg New York (1971) | MR | Zbl
,16. Frobenius splitting and ordinarity, Int. Math. Res. Not., 2 (2003), 109-121 | MR | Zbl
, ,17. Logarithmic structures of Fontaine-Illusie, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore London, 1989. | MR | Zbl
,18. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Publ. Math., Inst. Hautes Étud. Sci., 39 (1970), 175-232 | Numdam | MR | Zbl
,19. Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118 | MR | Zbl
,20. Sur la catégorie dérivée des D-modules filtrées, in Algebraic Geometry (Tokyo-Kyoto), pp. 151-237, Springer, Berlin Heidelberg New York, 1983. | MR | Zbl
,21. Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 78 (1972), 653-667 | MR | Zbl
,22. Universal Extensions and One Dimensional Crystalline Cohomology, Springer, Berlin Heidelberg New York (1974) | MR | Zbl
, ,23. Étale Cohomology, Princeton University Press, Princeton, N.J. (1980) | MR | Zbl
,24. The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc., 9 (1996), 205-236 | Zbl
,25. Triangulated Categories, Princeton University Press, Princeton, N.J. (2001) | MR | Zbl
,26. F-crystals and Griffiths transversality. in Proceedings of the International Symposium on Algebraic Geometry, Kyoto 1977, pp. 15-44, Kinokuniya Book-Store, Co., Tokyo, 1977. | MR | Zbl
,27. Griffiths transversality in crystalline cohomology, Ann. Math., 108 (1978), 395-419 | MR | Zbl
,28. F-Crystals, Griffiths Transversality, and the Hodge Decomposition, Astérisque, vol. 221, Soc. Math. France, 1994. | MR | Zbl
,29. Higgs cohomology, p-curvature, and the Cartier isomorphism, Compos. Math., 140 (2004), 145-164 | MR | Zbl
,30. Mochizuki's crys-stable bundles: a lexicon and applications, RIMS Kokyuroku, 43 (2007), 95-119
,31. “p-torsion” du schéma de Picard, Astérisque, 64 (1978), 87-149 | Numdam | Zbl
,32. N. S. Rivano, Catégories Tannakiennes, Lect. Notes Math., vol. 265, Springer, 1972. | MR
33. Lois polynômes et lois formelles en théorie des modules, Ann. Éc. Norm. Super., III. Sér., 80 (1963), 213-348 | Numdam | MR | Zbl
,34. On a twisted de Rham complex, Tohoku Math. J., 51 (1999), 125-140 | MR | Zbl
,35. Hodge structure via filtered D-modules, Astérisque, 130 (1985), 342-351 | Numdam | MR | Zbl
,36. Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., 75 (1992), 5-95 | Numdam | MR | Zbl
,37. Decomposition of the de Rham complex, Proc. Indian Acad. Sci., Math. Sci., 100 (1990), 103-106 | MR | Zbl
,38. V. Voevodsky, Homotopy theory of simplicial sheaves in completely decomposable topologies, http://www.math.uiuc.edu/K-theory/443, 2000.
- Hodge–Tate stacks and non-abelian 𝑝-adic Hodge theory of v-perfect complexes on rigid spaces, Journal für die reine und angewandte Mathematik (Crelles Journal) (2025) | DOI:10.1515/crelle-2024-0097
- The generic étaleness of the moduli space of dormant so2ℓ-opers, Journal of Geometry and Physics, Volume 211 (2025), p. 105439 | DOI:10.1016/j.geomphys.2025.105439
- Crystallinity of rigid flat connections revisited, Selecta Mathematica, Volume 31 (2025) no. 1 | DOI:10.1007/s00029-024-00995-7
- Integral p-adic non-abelian Hodge theory for small representations, Advances in Mathematics, Volume 458 (2024), p. 109950 | DOI:10.1016/j.aim.2024.109950
- On the Bezrukavnikov–Kaledin quantization of symplectic varieties in characteristic p, Compositio Mathematica, Volume 160 (2024) no. 2, p. 411 | DOI:10.1112/s0010437x23007601
- Periodicity of Hitchin’s Uniformizing Higgs Bundles, International Mathematics Research Notices, Volume 2024 (2024) no. 11, p. 9440 | DOI:10.1093/imrn/rnae042
- Tamely Ramified Geometric Langlands Correspondence in Positive Characteristic, International Mathematics Research Notices, Volume 2024 (2024) no. 7, p. 6176 | DOI:10.1093/imrn/rnae005
- Bogomolov’s inequality and Higgs sheaves on normal varieties in positive characteristic, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2024) no. 0 | DOI:10.1515/crelle-2023-0101
- Geometry of the logarithmic Hodge moduli space, Journal of the London Mathematical Society, Volume 109 (2024) no. 1 | DOI:10.1112/jlms.12857
- Exponentially twisted de Rham cohomology and rigid cohomology, Mathematische Annalen, Volume 390 (2024) no. 1, p. 639 | DOI:10.1007/s00208-023-02772-x
- On the Bogomolov–Gieseker inequality for tame Deligne–Mumford surfaces, Mathematische Zeitschrift, Volume 306 (2024) no. 2 | DOI:10.1007/s00209-023-03421-4
- Tame parahoric nonabelian Hodge correspondence in positive characteristic over algebraic curves, Selecta Mathematica, Volume 30 (2024) no. 4 | DOI:10.1007/s00029-024-00954-2
- A p-adic Simpson correspondence for rigid analytic varieties, Algebra Number Theory, Volume 17 (2023) no. 8, p. 1453 | DOI:10.2140/ant.2023.17.1453
- A Note on the Filtered Decomposition Theorem, Communications in Mathematics and Statistics, Volume 11 (2023) no. 3, p. 519 | DOI:10.1007/s40304-021-00262-7
- Lecture 9: Rigid Local Systems, Fontaine-Laffaille Modules and Crystalline Local Systems, Local Systems in Algebraic-Arithmetic Geometry, Volume 2337 (2023), p. 75 | DOI:10.1007/978-3-031-40840-3_9
- Cartier transform and prismatic crystals, Tunisian Journal of Mathematics, Volume 5 (2023) no. 3, p. 405 | DOI:10.2140/tunis.2023.5.405
- On the L2-Hodge theory of Landau-Ginzburg models, Advances in Mathematics, Volume 396 (2022), p. 108165 | DOI:10.1016/j.aim.2021.108165
- Twisted divided powers and applications, Journal of Number Theory, Volume 237 (2022), p. 285 | DOI:10.1016/j.jnt.2019.02.009
- Resolutions With Conical Slices and Descent for the Brauer Group Classes of Certain Central Reductions of Differential Operators in Characteristicp, International Mathematics Research Notices, Volume 2021 (2021) no. 19, p. 14629 | DOI:10.1093/imrn/rnz169
- Serre–Tate theory for Calabi–Yau varieties, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2021 (2021) no. 780, p. 139 | DOI:10.1515/crelle-2021-0041
- A note on Higgs-de Rham flows of level zero, Science China Mathematics, Volume 64 (2021) no. 2, p. 307 | DOI:10.1007/s11425-020-1782-x
- Equivariant Hodge theory and noncommutative geometry, Geometry Topology, Volume 24 (2020) no. 5, p. 2361 | DOI:10.2140/gt.2020.24.2361
- Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration, Inventiones mathematicae, Volume 221 (2020) no. 2, p. 505 | DOI:10.1007/s00222-020-00957-8
- Hodge theorem for the logarithmic de Rham complex via derived intersections, Research in the Mathematical Sciences, Volume 7 (2020) no. 3 | DOI:10.1007/s40687-020-00222-7
- Non-Abelian Hodge Theory and Related Topics, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 16 (2020) | DOI:10.3842/sigma.2020.029
- Sur une q-déformation locale de la théorie de Hodge non-abélienne en caractéristique positive, p-adic Hodge Theory (2020), p. 143 | DOI:10.1007/978-3-030-43844-9_5
- On higher direct images of convergent isocrystals, Compositio Mathematica, Volume 155 (2019) no. 11, p. 2180 | DOI:10.1112/s0010437x19007590
- On the p-supports of a holonomic
D -module, Inventiones mathematicae, Volume 215 (2019) no. 3, p. 779 | DOI:10.1007/s00222-018-0837-6 - Uniformization of p-adic curves via Higgs–de Rham flows, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 747, p. 63 | DOI:10.1515/crelle-2016-0020
- Kodaira–Saito vanishing via Higgs bundles in positive characteristic, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 755, p. 293 | DOI:10.1515/crelle-2017-0036
- Parallel transport for vector bundles on 𝑝-adic varieties, Journal of Algebraic Geometry, Volume 29 (2019) no. 1, p. 1 | DOI:10.1090/jag/747
- Pierre Deligne: A Poet of Arithmetic Geometry, The Abel Prize 2013-2017 (2019), p. 13 | DOI:10.1007/978-3-319-99028-6_2
- The Gauss–Manin connection on the periodic cyclic homology, Selecta Mathematica, Volume 24 (2018) no. 1, p. 531 | DOI:10.1007/s00029-018-0388-0
- Chern classes of crystals, Transactions of the American Mathematical Society, Volume 371 (2018) no. 2, p. 1333 | DOI:10.1090/tran/7342
- Towards mirror symmetry for varieties of general type, Advances in Mathematics, Volume 308 (2017), p. 208 | DOI:10.1016/j.aim.2016.03.035
- Geometric Langlands in prime characteristic, Compositio Mathematica, Volume 153 (2017) no. 2, p. 395 | DOI:10.1112/s0010437x16008113
- E 1-degeneration of the irregular Hodge filtration, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2017 (2017) no. 729, p. 171 | DOI:10.1515/crelle-2014-0118
- The Bogomolov–Miyaoka–Yau inequality for logarithmic surfaces in positive characteristic, Duke Mathematical Journal, Volume 165 (2016) no. 14 | DOI:10.1215/00127094-3627203
- On log local Cartier transform of higher level in characteristic p, Mathematische Zeitschrift, Volume 283 (2016) no. 3-4, p. 871 | DOI:10.1007/s00209-016-1625-x
- Non-abelian Hodge theory for algebraic curves in characteristic p, Geometric and Functional Analysis, Volume 25 (2015) no. 6, p. 1706 | DOI:10.1007/s00039-015-0343-6
- A note on the characteristic p nonabelian Hodge theory in the geometric case, International Journal of Mathematics, Volume 26 (2015) no. 01, p. 1550011 | DOI:10.1142/s0129167x15500111
- Bogomolov’s inequality for Higgs sheaves in positive characteristic, Inventiones mathematicae, Volume 199 (2015) no. 3, p. 889 | DOI:10.1007/s00222-014-0534-z
- Une Neutralisation Explicite de L'algèbre de Weyl Quantique Complétée, Communications in Algebra, Volume 42 (2014) no. 5, p. 2163 | DOI:10.1080/00927872.2012.758267
- ON A CONJECTURE OF LAN–SHENG–ZUO ON SEMISTABLE HIGGS BUNDLES: RANK 3 CASE, International Journal of Mathematics, Volume 25 (2014) no. 02, p. 1450013 | DOI:10.1142/s0129167x1450013x
- Irregular Hodge filtration on twisted de Rham cohomology, Manuscripta Mathematica, Volume 144 (2014) no. 1-2, p. 99 | DOI:10.1007/s00229-013-0642-x
- Bogomolov-Tian-Todorov theorems for Landau-Ginzburg models, arXiv (2014) | DOI:10.48550/arxiv.1409.5996 | arXiv:1409.5996
- Étale splittings of certain Azumaya algebras on toric and hypertoric varieties in positive characteristic, Advances in Mathematics, Volume 233 (2013) no. 1, p. 268 | DOI:10.1016/j.aim.2012.10.008
- Higgs bundles over the good reduction of a quaternionic Shimura curve, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 671 | DOI:10.1515/crelle.2011.158
- Holonomic -modules and positive characteristic, Japanese Journal of Mathematics, Volume 4 (2009) no. 1, p. 1 | DOI:10.1007/s11537-009-0852-x
- An Arakelov inequality in characteristic p and upper bound of p-rank zero locus, Journal of Number Theory, Volume 129 (2009) no. 12, p. 3029 | DOI:10.1016/j.jnt.2009.05.015
- Twisted de Rham cohomology, homological definition of the integral and “Physics over a ring”, Nuclear Physics, Section B, Volume 809 (2009) no. 3, pp. 547-560 | DOI:10.1016/j.nuclphysb.2008.10.005
- Mirabolic Langlands duality and the quantum Calogero–Moser system, Transformation Groups, Volume 14 (2009) no. 4, p. 931 | DOI:10.1007/s00031-009-9068-7
- Hodge theoretic aspects of mirror symmetry, arXiv (2008) | DOI:10.48550/arxiv.0806.0107 | arXiv:0806.0107
- Noncommutative Counterparts of the Springer Resolution, arXiv (2006) | DOI:10.48550/arxiv.math/0604445 | arXiv:math/0604445
- Geometric Langlands correspondence for D-modules in prime characteristic: the GL(n) case, arXiv (2006) | DOI:10.48550/arxiv.math/0602255 | arXiv:math/0602255
- Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, arXiv (2006) | DOI:10.48550/arxiv.math/0602075 | arXiv:math/0602075
- Automorphisms of the Weyl Algebra, Letters in Mathematical Physics, Volume 74 (2005) no. 2, pp. 181-199 | DOI:10.1007/s11005-005-0027-5
Cité par 57 documents. Sources : Crossref, NASA ADS