Moduli spaces of local systems and higher Teichmüller theory
Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 1-211.

Let G be a split semisimple algebraic group over 𝐐 with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(𝐑), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil-Petersson form for one of these spaces. It is related to the motivic dilogarithm.

@article{PMIHES_2006__103__1_0,
     author = {Fock, Vladimir and Goncharov, Alexander},
     title = {Moduli spaces of local systems and higher {Teichm\"uller} theory},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--211},
     publisher = {Springer},
     volume = {103},
     year = {2006},
     doi = {10.1007/s10240-006-0039-4},
     mrnumber = {2233852},
     zbl = {1099.14025},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-006-0039-4/}
}
TY  - JOUR
AU  - Fock, Vladimir
AU  - Goncharov, Alexander
TI  - Moduli spaces of local systems and higher Teichmüller theory
JO  - Publications Mathématiques de l'IHÉS
PY  - 2006
SP  - 1
EP  - 211
VL  - 103
PB  - Springer
UR  - https://www.numdam.org/articles/10.1007/s10240-006-0039-4/
DO  - 10.1007/s10240-006-0039-4
LA  - en
ID  - PMIHES_2006__103__1_0
ER  - 
%0 Journal Article
%A Fock, Vladimir
%A Goncharov, Alexander
%T Moduli spaces of local systems and higher Teichmüller theory
%J Publications Mathématiques de l'IHÉS
%D 2006
%P 1-211
%V 103
%I Springer
%U https://www.numdam.org/articles/10.1007/s10240-006-0039-4/
%R 10.1007/s10240-006-0039-4
%G en
%F PMIHES_2006__103__1_0
Fock, Vladimir; Goncharov, Alexander. Moduli spaces of local systems and higher Teichmüller theory. Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 1-211. doi : 10.1007/s10240-006-0039-4. https://www.numdam.org/articles/10.1007/s10240-006-0039-4/

1. I. Biswas, P. Ares-Gastesi and S. Govindarajan, Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces, Trans. Amer. Math. Soc., 349 (1997), no. 4, 1551-1560, alg-geom/9510011. | MR | Zbl

2. A. A. Beilinson and V. G. Drinfeld, Opers, math.AG/0501398.

3. A. Berenstein and D. Kazhdan, Geometric and unipotent crystals, Geom. Funct. Anal., Special volume, part II (2000), 188-236. | MR | Zbl

4. A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive algebras, Invent. Math., 143 (2001), no. 1, 77-128, math.RT/9912012. | MR | Zbl

5. A. Berenstein, S. Fomin and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122 (1996), no. 1, 49-149. | MR | Zbl

6. A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras. III: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), no. 1, 1-52, math.RT/0305434. | MR

7. L. Bers, Universal Teichmüller space, Analytic Methods in Mathematical Physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), pp. 65-83, Gordon and Breach (1970). | MR | Zbl

8. L. Bers, On the boundaries of Teichmüller spaces and on Kleinian groups, Ann. Math., 91 (1970), 670-600. | MR | Zbl

9. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), no. 1, 139-162. | MR | Zbl

10. N. Bourbaki, Lie groups and Lie algebras, Chapters 4-6, translated from the 1968 French original by A. Pressley, Elements of Mathematics (Berlin), Springer, Berlin (2002). | MR | Zbl

11. M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J., 72 (1993), 217-239. | MR | Zbl

12. J.-J Brylinsky and P. Deligne, Central extensions of reductive groups by K2, Publ. Math., Inst. Hautes Étud. Sci., 94 (2001), 5-85. | Numdam | MR | Zbl

13. N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Inc., Boston, MA (1997). | MR | Zbl

14. L. O. Chekhov and V. V. Fock, Quantum Teichmüller spaces, Teor. Mat. Fiz., 120 (1999), no. 3, 511-528, math.QA/9908165. | MR | Zbl

15. K. Corlette, Flat G-bundles with canonical metrics, J. Differ. Geom., 28 (1988), 361-382. | MR | Zbl

16. P. Deligne, Équations différentielles à points singuliers réguliers, Springer Lect. Notes Math., vol. 163 (1970). | MR | Zbl

17. V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Curr. Probl. Math., 24 (1984), 81-180, in Russian. | MR | Zbl

18. S. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc., 55 (1987), 127-131. | MR | Zbl

19. H. Esnault, B. Kahn, M. Levine and E. Viehweg, The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc., 11 (1998), no. 1, 73-118. | MR | Zbl

20. V. V. Fock, Dual Teichmüller spaces, dg-ga/9702018.

21. V. V. Fock and A. A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, Transl., Ser. 2, Amer. Math. Soc., 191 (1999), 67-86, math.QA/9802054. | MR | Zbl

22. V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245.

23. V. V. Fock and A. B. Goncharov, Moduli spaces of convex projective structures on surfaces, to appear in Adv. Math. (2006), math.AG/0405348. | MR | Zbl

24. V. V. Fock and A. B. Goncharov, Dual Teichmüller and lamination spaces, to appear in the Handbook on Teichmüller theory, math.AG/0510312. | MR

25. V. V. Fock and A. B. Goncharov, Cluster 𝒳-Varieties, Amalganations, and Poisson-Lie Groups, Progr. Math., Birkhäuser, volume dedicated to V. G. Drinfeld, math.RT/0508408. | MR

26. V. V. Fock and A. B. Goncharov, to appear.

27. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12 (1999), no. 2, 335-380, math.RA/9912128. | MR | Zbl

28. S. Fomin and A. Zelevinsky, Cluster algebras, I, J. Amer. Math. Soc., 15 (2002), no. 2, 497-529, math.RT/0104151. | MR | Zbl

29. S. Fomin and A. Zelevinsky, Cluster algebras, II: Finite type classification, Invent. Math., 154 (2003), no. 1, 63-121, math.RA/0208229. | MR | Zbl

30. S. Fomin and A. Zelevinsky, The Laurent phenomenon. Adv. Appl. Math., 28 (2002), no. 2, 119-144, math.CO/0104241. | MR | Zbl

31. A. M. Gabrielov, I. M. Gelfand and M. V. Losik, Combinatorial computation of characteristic classes, I, II. (Russian), Funkts. Anal. Prilozh., 9 (1975), no. 2, 12-28; no. 3, 5-26. | MR | Zbl

32. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition of the 1941 Russian original. | Zbl

33. F. R. Gantmacher, M. G. Krein, Sur les Matrices Oscillatores, C.R. Acad. Sci. Paris, 201 (1935), AMS Chelsea Publ., Providence, RI (2002).

34. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J., 3 (2003), no. 3, 899-934, math.QA/0208033. | MR | Zbl

35. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J., 127 (2005), no. 2, 291-311, math.QA/0309138. | MR | Zbl

36. O. Guichard, Sur les répresentations de groupes de surface, preprint.

37. W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), no. 2, 200-225. | MR | Zbl

38. W. Goldman, Convex real projective structures on compact surfaces, J. Differ. Geom., 31 (1990), 126-159. | MR | Zbl

39. A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., 114 (1995), no. 2, 197-318. | MR | Zbl

40. A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, part 2, pp. 43-96, Amer. Math. Soc., Providence, RI (1994). | MR | Zbl

41. A. B. Goncharov, Explicit Construction of Characteristic Classes, I, M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 169-210, Amer. Math. Soc., Providence, RI (1993). | MR | Zbl

42. A. B. Goncharov, Deninger's conjecture of L-functions of elliptic curves at s=3. Algebraic geometry, 4. J. Math. Sci., 81 (1996), no. 3, 2631-2656, alg-geom/9512016. | Zbl

43. A. B. Goncharov, Polylogarithms, regulators and Arakelov motivic complexes, J. Amer. Math. Soc., 18 (2005), no. 1, 1-6; math.AG/0207036. | MR | Zbl

44. A. B. Goncharov and Yu. I. Manin, Multiple ζ-motives and moduli spaces ℳ0,n , Compos. Math., 140 (2004), no. 1, 1-14, math.AG/0204102. | Zbl

45. J. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., 84 (1986), no. 1, 157-176. | MR | Zbl

46. N. J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), no. 3, 449-473. | MR | Zbl

47. N. J. Hitchin, The self-duality equation on a Riemann surface, Proc. Lond. Math. Soc., 55 (1987), 59-126. | MR | Zbl

48. R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., 43 (1998), no. 2, 105-115. | MR | Zbl

49. I. Kra, Deformation spaces, A Crash Course on Kleinian Groups (Lectures at a Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974), Lect. Notes Math., vol. 400, pp. 48-70, Springer, Berlin (1974). | MR | Zbl

50. M. Kontsevich, Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars 1990-1992, Birkhäuser Boston, Boston, MA (1993), 173-187. | MR | Zbl

51. F. Labourie, Anosov flows, surface groups and curves in projective spaces, preprint, Dec. 8 (2003). | MR | Zbl

52. G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry, Progr. Math., vol. 123, pp. 531-568, Birkhäuser Boston, Boston, MA (1994). | MR | Zbl

53. G. Lusztig, Total positivity and canonical bases, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, pp. 281-295, Cambridge Univ. Press, Cambridge (1997). | MR | Zbl

54. C. Mcmullen, Iteration on Teichmüller space, Invent. Math., 99 (1990), no. 2, 425-454. | MR | Zbl

55. J. Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, no. 72. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1971). | MR | Zbl

56. I. Nikolaev and E. Zhuzhoma, Flows on 2-dimensional manifolds, Springer Lect. Notes Math., vol. 1705 (1999). | MR | Zbl

57. R. C. Penner, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113 (1987), no. 2, 299-339. | MR | Zbl

58. R. C. Penner, Weil-Petersson volumes, J. Differ. Geom., 35 (1992), no. 3, 559-608. | MR | Zbl

59. R. C. Penner, Universal constructions in Teichmüller theory, Adv. Math., 98 (1993), no. 2, 143-215. | MR | Zbl

60. R. C. Penner, The universal Ptolemy group and its completions, Geometric Galois Actions, 2, 293-312, Lond. Math. Soc. Lect. Note Ser., 243, Cambridge Univ. Press (1997). | MR | Zbl

61. R. C. Penner and J. L. Harer, Combinatorics of train tracks, Ann. Math. Studies, 125, Princeton University Press, Princeton, NJ (1992). | MR | Zbl

62. I. J. Schoenberg, Convex domains and linear combinations of continuous functions, Bull. Amer. Math. Soc., 39 (1933), 273-280. | MR | Zbl

63. I. J. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z., 32 (1930), 321-322. | JFM | MR

64. C. Simpson, Constructing variations of Hodge structures using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867-918. | MR | Zbl

65. J.-P. Serre, Cohomologie Galoisienne (French), with a contribution by J.-L. Verdier, Lect. Notes Math., no. 5, 3rd edn., v+212pp., Springer, Berlin, New York (1965). | MR | Zbl

66. K. Strebel, Quadratic Differentials, Springer, Berlin, Heidelberg, New York (1984). | MR | Zbl

67. P. Sherman and A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4 (2004), no. 4, 947-974, math.RT/0307082. | MR | Zbl

68. A. A. Suslin, Homology of GLn , characteristic classes and Milnor K-theory, Algebraic Geometry and its Applications, Tr. Mat. Inst. Steklova, 165 (1984), 188-204. | MR | Zbl

69. W. Thurston, The geometry and topology of three-manifolds, Princeton University Notes, http://www.msri.org/publications/books/gt3m.

70. A. M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952), 88-92. | MR | Zbl

71. S. Wolpert, Geometry of the Weil-Petersson completion of the Teichmüller space, Surv. Differ. Geom., Suppl. J. Differ. Geom., VIII (2002), 357-393. | MR | Zbl

  • Rungi, Nicholas; Tamburelli, Andrea A semi-pseudo-Kähler structure on the SL(3,R)-Hitchin component and the Goldman symplectic form, Advances in Mathematics, Volume 461 (2025), p. 110066 | DOI:10.1016/j.aim.2024.110066
  • Bridgeland, Tom Joyce structures and their twistor spaces, Advances in Mathematics, Volume 462 (2025), p. 110089 | DOI:10.1016/j.aim.2024.110089
  • Evans, Parker Geometric structures for the G2′-Hitchin component, Advances in Mathematics, Volume 462 (2025), p. 110091 | DOI:10.1016/j.aim.2024.110091
  • Ishibashi, Tsukasa; Yuasa, Wataru Skein and cluster algebras of unpunctured surfaces for sp4, Advances in Mathematics, Volume 465 (2025), p. 110149 | DOI:10.1016/j.aim.2025.110149
  • Mathews, Daniel V. Spinors and horospheres, Advances in Mathematics, Volume 468 (2025), p. 110200 | DOI:10.1016/j.aim.2025.110200
  • Douglas, Daniel C.; Sun, Zhe Tropical Fock–Goncharov coordinates for SL 3 -webs on surfaces II: naturality, Algebraic Combinatorics, Volume 8 (2025) no. 1, p. 101 | DOI:10.5802/alco.408
  • Fei, JiaRui On the General Ranks of QP Representations, Algebras and Representation Theory, Volume 28 (2025) no. 1, p. 47 | DOI:10.1007/s10468-024-10306-5
  • Coman, Ioana; Longhi, Pietro; Teschner, Jörg From Quantum Curves to Topological String Partition Functions II, Annales Henri Poincaré (2025) | DOI:10.1007/s00023-025-01538-2
  • Jordan, David Quantum Character Varieties, Encyclopedia of Mathematical Physics (2025), p. 635 | DOI:10.1016/b978-0-323-95703-8.00015-x
  • Barman, Pabitra; Gupta, Subhojoy Dominating surface-group representations via Fock–Goncharov coordinates, Geometriae Dedicata, Volume 219 (2025) no. 1 | DOI:10.1007/s10711-024-00974-4
  • Dey, Subhadip On Borel Anosov subgroups of SL(d, ℝ), Geometry Topology, Volume 29 (2025) no. 1, p. 171 | DOI:10.2140/gt.2025.29.171
  • Ishibashi, Tsukasa; Kano, Shunsuke; Yuasa, Wataru Skein and Cluster Algebras with Coefficients for Unpunctured Surfaces, International Mathematics Research Notices, Volume 2025 (2025) no. 4 | DOI:10.1093/imrn/rnaf024
  • Beyer, James; Muller, Greg Deep Points of Cluster Algebras, International Mathematics Research Notices, Volume 2025 (2025) no. 4 | DOI:10.1093/imrn/rnaf027
  • Guichard, Olivier; Wienhard, Anna Generalizing Lusztig’s total positivity, Inventiones mathematicae, Volume 239 (2025) no. 3, p. 707 | DOI:10.1007/s00222-024-01303-y
  • Kantarcı Oğuz, Ezgi; Yıldırım, Emine Cluster expansions: T-walks, labeled posets and matrix calculations, Journal of Algebra, Volume 669 (2025), p. 183 | DOI:10.1016/j.jalgebra.2025.01.024
  • Baba, Shinpei Neck‐pinching of CP1CP1‐structures in the PSL2CPSL2C‐character variety, Journal of Topology, Volume 18 (2025) no. 1 | DOI:10.1112/topo.70010
  • Çanakçı, İlke; Kalck, Martin; Pressland, Matthew Cluster categories for completed infinity‐gons I: Categorifying triangulations, Journal of the London Mathematical Society, Volume 111 (2025) no. 2 | DOI:10.1112/jlms.70092
  • Kineider, Clarence; Rogozinnikov, Eugen On partial abelianization of framed local systems, Mathematische Annalen (2025) | DOI:10.1007/s00208-025-03093-x
  • Bossinger, Lara; Cheung, Man-Wai; Magee, Timothy; Nájera Chávez, Alfredo Newton–Okounkov bodies and minimal models for cluster varieties, Advances in Mathematics, Volume 447 (2024), p. 109680 | DOI:10.1016/j.aim.2024.109680
  • Chen, Qiyue; Mandel, Travis; Qin, Fan Stability scattering diagrams and quiver coverings, Advances in Mathematics, Volume 459 (2024), p. 110019 | DOI:10.1016/j.aim.2024.110019
  • Douglas, Daniel C Points of quantum SLn coming from quantum snakes, Algebraic Geometric Topology, Volume 24 (2024) no. 5, p. 2537 | DOI:10.2140/agt.2024.24.2537
  • Martone, Giuseppe; Ouyang, Charles; Tamburelli, Andrea A closed ball compactification of a maximal component via cores of trees, Algebraic Geometric Topology, Volume 24 (2024) no. 7, p. 3693 | DOI:10.2140/agt.2024.24.3693
  • Goncharov, Alexander; Kontsevich, Maxim Spectral Description of Non-Commutative Local Systems on Surfaces and Non-Commutative Cluster Varieties, Arithmetic and Algebraic Geometry (2024), p. 109 | DOI:10.1007/978-3-031-74134-0_5
  • Ip, Ivan Chi-Ho; Man, Ryuichi Positive Representations with Zero Casimirs, Communications in Mathematical Physics, Volume 405 (2024) no. 4 | DOI:10.1007/s00220-024-04955-2
  • Kim, Hyun Kyu; Scarinci, Carlos A Quantization of Moduli Spaces of 3-Dimensional Gravity, Communications in Mathematical Physics, Volume 405 (2024) no. 6 | DOI:10.1007/s00220-024-05012-8
  • Dumas, David; Neitzke, Andrew Opers and Non-Abelian Hodge: Numerical Studies, Experimental Mathematics, Volume 33 (2024) no. 1, p. 27 | DOI:10.1080/10586458.2021.1988006
  • Douglas, Daniel C.; Sun, Zhe Tropical Fock–Goncharov coordinates for -webs on surfaces I: construction, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2023.120
  • Hamenstädt, Ursula; Jäckel, Frieder Rigidity of geometric structures, Geometriae Dedicata, Volume 218 (2024) no. 1 | DOI:10.1007/s10711-023-00861-4
  • Lee, Gye-Seon; Zhang, Tengren Cusped Borel Anosov representations with positivity, Geometriae Dedicata, Volume 218 (2024) no. 2 | DOI:10.1007/s10711-024-00895-2
  • Gao, Honghao; Shen, Linhui; Weng, Daping Augmentations, Fillings, and Clusters, Geometric and Functional Analysis, Volume 34 (2024) no. 3, p. 798 | DOI:10.1007/s00039-024-00673-y
  • Loray, Frank The Riemann-Hilbert Correspondence for Rank 2 Meromorphic Connections on Curves, Handbook of Geometry and Topology of Singularities VI: Foliations (2024), p. 267 | DOI:10.1007/978-3-031-54172-8_8
  • Pan, Huiping; Su, Weixu The Geometry of the Thurston Metric: A Survey, In the Tradition of Thurston III (2024), p. 7 | DOI:10.1007/978-3-031-43502-7_2
  • Simpson, Carlos T. Twistor space for local systems on an open curve, International Journal of Mathematics, Volume 35 (2024) no. 09 | DOI:10.1142/s0129167x24410131
  • Inoue, Rei; Kuniba, Atsuo; Terashima, Yuji Quantum Cluster Algebras and 3D Integrability: Tetrahedron and 3D Reflection Equations, International Mathematics Research Notices, Volume 2024 (2024) no. 16, p. 11549 | DOI:10.1093/imrn/rnae128
  • Suen, Yat-Hin Toric Vector Bundles, Non-abelianization, and Spectral Networks, International Mathematics Research Notices, Volume 2024 (2024) no. 24, p. 14576 | DOI:10.1093/imrn/rnae250
  • Asaka, Takeru; Ishibashi, Tsukasa; Kano, Shunsuke Earthquake Theorem for Cluster Algebras of Finite Type, International Mathematics Research Notices, Volume 2024 (2024) no. 8, p. 7129 | DOI:10.1093/imrn/rnae027
  • Dey, Subhadip; Kapovich, Michael Klein–Maskit combination theorem for Anosov subgroups: Amalgams, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0080
  • Yurikusa, Toshiya Denominator vectors and dimension vectors from triangulated surfaces, Journal of Algebra, Volume 641 (2024), p. 620 | DOI:10.1016/j.jalgebra.2023.12.002
  • Lüdenbach, Teresa Ideal polytopes for representations of GLn(C), Journal of Algebra, Volume 658 (2024), p. 90 | DOI:10.1016/j.jalgebra.2024.05.055
  • Kaufman, Dani Mutation invariant functions on cluster ensembles, Journal of Pure and Applied Algebra, Volume 228 (2024) no. 2, p. 107495 | DOI:10.1016/j.jpaa.2023.107495
  • Douglas, Daniel C. Quantum traces for SLn(C): The case n = 3, Journal of Pure and Applied Algebra, Volume 228 (2024) no. 7, p. 107652 | DOI:10.1016/j.jpaa.2024.107652
  • Beyrer, Jonas; Pozzetti, Beatrice Degenerations of kk‐positive surface group representations, Journal of Topology, Volume 17 (2024) no. 3 | DOI:10.1112/topo.12352
  • Lê, Thang T. Q.; Sikora, Adam S. Stated SL(nn)‐skein modules and algebras, Journal of Topology, Volume 17 (2024) no. 3 | DOI:10.1112/topo.12350
  • Casals, Roger; Gorsky, Eugene; Gorsky, Mikhail; Le, Ian; Shen, Linhui; Simental, José Cluster structures on braid varieties, Journal of the American Mathematical Society, Volume 38 (2024) no. 2, p. 369 | DOI:10.1090/jams/1048
  • Przytycki, Józef H.; Bakshi, Rhea Palak; Ibarra, Dionne; Montoya-Vega, Gabriel; Weeks, Deborah The Kauffman Bracket Skein Module and Algebra of Surface I-Bundles, Lectures in Knot Theory (2024), p. 249 | DOI:10.1007/978-3-031-40044-5_13
  • Przytycki, Józef H.; Bakshi, Rhea Palak; Ibarra, Dionne; Montoya-Vega, Gabriel; Weeks, Deborah Multiplicative Structure of the Kauffman Bracket Skein Algebra of the Thickened T-Shirt, Lectures in Knot Theory (2024), p. 265 | DOI:10.1007/978-3-031-40044-5_14
  • Aamand, Nanna; Kaufman, Dani A Wilson line realization of quantum groups, Letters in Mathematical Physics, Volume 114 (2024) no. 1 | DOI:10.1007/s11005-023-01756-x
  • Di Francesco, Philippe; Kedem, Rinat; Khoroshkin, Sergey; Schrader, Gus; Shapiro, Alexander Ruijsenaars wavefunctions as modular group matrix coefficients, Letters in Mathematical Physics, Volume 114 (2024) no. 6 | DOI:10.1007/s11005-024-01881-1
  • Allegretti, Dylan G. L. Stability conditions and Teichmüller space, Mathematische Annalen, Volume 390 (2024) no. 3, p. 3827 | DOI:10.1007/s00208-024-02852-6
  • Yoon, Seokbeom The twisted 1-loop invariant and the Jacobian of Ptolemy varieties, Mathematische Zeitschrift, Volume 307 (2024) no. 1 | DOI:10.1007/s00209-024-03491-y
  • Alessandrini, Daniele; Guichard, Olivier; Rogozinnikov, Eugen; Wienhard, Anna Noncommutative Coordinates for Symplectic Representations, Memoirs of the American Mathematical Society, Volume 300 (2024) no. 1504 | DOI:10.1090/memo/1504
  • Kenyon, R. Some combinatorial problems arising in the dimer model, Open Problems in Algebraic Combinatorics, Volume 110 (2024), p. 39 | DOI:10.1090/pspum/110/02012
  • Berestycki, Nathanaël; Laslier, Benoît; Ray, Gourab Dimers on Riemann surfaces, II: Conformal invariance and scaling limit, Probability and Mathematical Physics, Volume 5 (2024) no. 4, p. 961 | DOI:10.2140/pmp.2024.5.961
  • Song, Jinfeng Cluster realisations of ıquantumıquantum groups of type AI, Proceedings of the London Mathematical Society, Volume 129 (2024) no. 4 | DOI:10.1112/plms.12636
  • Argüz, Hülya; Bousseau, Pierrick Quivers and curves in higher dimension, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9232
  • Mondello, Gabriele; Panov, Dmitri On decorated representation spaces associated to spherical surfaces, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9112
  • Fraser, Chris; Pylyavskyy, Pavlo Tensor diagrams and cluster combinatorics at punctures, Advances in Mathematics, Volume 412 (2023), p. 108796 | DOI:10.1016/j.aim.2022.108796
  • Ishibashi, Tsukasa; Oya, Hironori; Shen, Linhui A=U for cluster algebras from moduli spaces of G-local systems, Advances in Mathematics, Volume 431 (2023), p. 109256 | DOI:10.1016/j.aim.2023.109256
  • Bray, Harrison; Canary, Richard; Kao, Lien-Yung; Martone, Giuseppe Pressure metrics for cusped Hitchin components, Advances in Mathematics, Volume 435 (2023), p. 109352 | DOI:10.1016/j.aim.2023.109352
  • Kim, Hyun Kyu; Lê, Thang T Q; Son, Miri SL2 quantum trace in quantum Teichmüller theory via writhe, Algebraic Geometric Topology, Volume 23 (2023) no. 1, p. 339 | DOI:10.2140/agt.2023.23.339
  • Boden, Hans U; Karimi, Homayun; Sikora, Adam S Adequate links in thickened surfaces and the generalized Tait conjectures, Algebraic Geometric Topology, Volume 23 (2023) no. 5, p. 2271 | DOI:10.2140/agt.2023.23.2271
  • Williams, Nicholas J. Quiver combinatorics and triangulations of cyclic polytopes, Algebraic Combinatorics, Volume 6 (2023) no. 3, p. 639 | DOI:10.5802/alco.280
  • Inoue, Rei; Yamazaki, Takao Invariants of Weyl Group Action and q-characters of Quantum Affine Algebras, Algebras and Representation Theory, Volume 26 (2023) no. 6, p. 3167 | DOI:10.1007/s10468-023-10205-1
  • Bousseau, Pierrick Strong Positivity for the Skein Algebras of the 4-Punctured Sphere and of the 1-Punctured Torus, Communications in Mathematical Physics, Volume 398 (2023) no. 1, p. 1 | DOI:10.1007/s00220-022-04512-9
  • Schulz, Sebastian Nilpotent Higgs Bundles and Families of Flat Connections, Communications in Mathematical Physics, Volume 403 (2023) no. 2, p. 877 | DOI:10.1007/s00220-023-04811-9
  • DAI, XIAN; MARTONE, GIUSEPPE Correlation of the renormalized Hilbert length for convex projective surfaces, Ergodic Theory and Dynamical Systems, Volume 43 (2023) no. 9, p. 2938 | DOI:10.1017/etds.2022.56
  • Casals, Roger; Zaslow, Eric Legendrian weaves : N–graph calculus, flag moduli and applications, Geometry Topology, Volume 26 (2023) no. 8, p. 3589 | DOI:10.2140/gt.2022.26.3589
  • Edwards, Samuel; Lee, Minju; Oh, Hee Anosov groups: local mixing, counting and equidistribution, Geometry Topology, Volume 27 (2023) no. 2, p. 513 | DOI:10.2140/gt.2023.27.513
  • Howie, Joshua A.; Mathews, Daniel V.; Purcell, Jessica S.; Thompson, Em K. A-polynomials of fillings of the Whitehead sister, International Journal of Mathematics, Volume 34 (2023) no. 13 | DOI:10.1142/s0129167x23500854
  • Chekhov, Leonid O; Shapiro, Michael Log-Canonical Coordinates for Symplectic Groupoid and Cluster Algebras, International Mathematics Research Notices, Volume 2023 (2023) no. 11, p. 9565 | DOI:10.1093/imrn/rnac101
  • Le, Ian; Luo, Sammy Generalized Minors and Tensor Invariants, International Mathematics Research Notices, Volume 2023 (2023) no. 16, p. 13658 | DOI:10.1093/imrn/rnac200
  • Lee, Minju; Oh, Hee Invariant Measures for Horospherical Actions and Anosov Groups, International Mathematics Research Notices, Volume 2023 (2023) no. 19, p. 16226 | DOI:10.1093/imrn/rnac262
  • Pushkar, Petya; Temkin, Misha Enhanced Bruhat Decomposition and Morse Theory, International Mathematics Research Notices, Volume 2023 (2023) no. 19, p. 16837 | DOI:10.1093/imrn/rnac326
  • Allegretti, Dylan G L On the Wall-Crossing Formula for Quadratic Differentials, International Mathematics Research Notices, Volume 2023 (2023) no. 9, p. 8033 | DOI:10.1093/imrn/rnac071
  • Bazier-Matte, Véronique; Huang, Ruiyan; Luo, Hanyi Number of triangulations of a Möbius strip, Involve, a Journal of Mathematics, Volume 16 (2023) no. 4, p. 547 | DOI:10.2140/involve.2023.16.547
  • Argüz, Hülya; Bousseau, Pierrick Fock–Goncharov dual cluster varieties and Gross–Siebert mirrors, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2023) no. 0 | DOI:10.1515/crelle-2023-0043
  • Holm, Thorsten; Skowroński, Andrzej; Skowyrski, Adam Virtual mutations of weighted surface algebras, Journal of Algebra, Volume 619 (2023), p. 822 | DOI:10.1016/j.jalgebra.2022.11.026
  • Dechant, Pierre-Philippe; He, Yang-Hui; Heyes, Elli; Hirst, Edward Cluster algebras: Network science and machine learning, Journal of Computational Algebra, Volume 8 (2023), p. 100008 | DOI:10.1016/j.jaca.2023.100008
  • Musiker, Gregg; Ovenhouse, Nicholas; Zhang, Sylvester W. Matrix formulae for decorated super Teichmüller spaces, Journal of Geometry and Physics, Volume 189 (2023), p. 104828 | DOI:10.1016/j.geomphys.2023.104828
  • Zhao, Peng; Zou, Hao Remarks on 2d unframed quiver gauge theories, Journal of High Energy Physics, Volume 2023 (2023) no. 5 | DOI:10.1007/jhep05(2023)121
  • Kim, Hyuk; Kim, Seonhwa; Yoon, Seokbeom Octahedral developing of knot complement II: Ptolemy coordinates and applications, Journal of Knot Theory and Its Ramifications, Volume 32 (2023) no. 09 | DOI:10.1142/s0218216523500578
  • Fei, Jiarui Tropical FF‐polynomials and general presentations, Journal of the London Mathematical Society, Volume 107 (2023) no. 6, p. 2079 | DOI:10.1112/jlms.12734
  • Bridgeland, Tom; Masoero, Davide On the monodromy of the deformed cubic oscillator, Mathematische Annalen, Volume 385 (2023) no. 1-2, p. 193 | DOI:10.1007/s00208-021-02337-w
  • Ishibashi, Tsukasa; Yuasa, Wataru Skein and cluster algebras of unpunctured surfaces for sl3, Mathematische Zeitschrift, Volume 303 (2023) no. 3 | DOI:10.1007/s00209-023-03208-7
  • Ishibashi, Tsukasa; Oya, Hironori Wilson lines and their Laurent positivity, Mathematische Zeitschrift, Volume 305 (2023) no. 2 | DOI:10.1007/s00209-023-03355-x
  • Huang, Yi; Sun, Zhe McShane Identities for Higher Teichmüller Theory and the Goncharov–Shen Potential, Memoirs of the American Mathematical Society, Volume 286 (2023) no. 1422 | DOI:10.1090/memo/1422
  • Fock, Vladimir; Tatitscheff, Valdo; Thomas, Alexander Topological quantum field theories from Hecke algebras, Representation Theory of the American Mathematical Society, Volume 27 (2023) no. 9, p. 248 | DOI:10.1090/ert/640
  • Zuevsky, A. Reduction cohomology of Riemann surfaces, Reviews in Mathematical Physics, Volume 35 (2023) no. 07 | DOI:10.1142/s0129055x23300054
  • Del Monte, Fabrizio; Longhi, Pietro The threefold way to quantum periods: WKB, TBA equations and q-Painlevé, SciPost Physics, Volume 15 (2023) no. 3 | DOI:10.21468/scipostphys.15.3.112
  • Goncharov, Alexander B.; Kislinskyi, Oleksii Cluster construction of the second motivic Chern class, Selecta Mathematica, Volume 29 (2023) no. 4 | DOI:10.1007/s00029-023-00854-x
  • Szabó, Szilárd Hitchin WKB-problem andP = Wconjecture in lowest degree for rank 2 over the 5-punctured sphere, The Quarterly Journal of Mathematics, Volume 74 (2023) no. 2, p. 687 | DOI:10.1093/qmath/haac037
  • Chekhov, L. O. Cluster variables for affine Lie–Poisson systems, Theoretical and Mathematical Physics, Volume 217 (2023) no. 3, p. 1987 | DOI:10.1134/s0040577923120140
  • Schwarz, Albert S.; Zeitlin, Anton M. Super Riemann Surfaces and Fatgraphs, Universe, Volume 9 (2023) no. 9, p. 384 | DOI:10.3390/universe9090384
  • Bertola, Marco; Korotkin, Dmitry; del Monte, Fabrizio Generating Function of Monodromy Symplectomorphism for 2 × 2 Fuchsian Systems and Its WKB Expansion, Zurnal matematiceskoj fiziki, analiza, geometrii, Volume 19 (2023) no. 2, p. 301 | DOI:10.15407/mag19.02.301
  • Gupta, Subhojoy; Su, Weixu Dominating surface-group representations into PSL2(C) in the relative representation variety, manuscripta mathematica, Volume 172 (2023) no. 3-4, p. 1169 | DOI:10.1007/s00229-022-01443-6
  • Canary, Richard; Zhang, Tengren; Zimmer, Andrew Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups, Advances in Mathematics, Volume 404 (2022), p. 108439 | DOI:10.1016/j.aim.2022.108439
  • Williams, Nicholas J. New interpretations of the higher Stasheff–Tamari orders, Advances in Mathematics, Volume 407 (2022), p. 108552 | DOI:10.1016/j.aim.2022.108552
  • Kim, Sungwoon; Tan, Ser Peow; Zhang, Tengren Weakly positive and directed Anosov representations, Advances in Mathematics, Volume 408 (2022), p. 108611 | DOI:10.1016/j.aim.2022.108611
  • Lam, Thomas; Speyer, David E. Cohomology of cluster varieties, I: Locally acyclic case, Algebra Number Theory, Volume 16 (2022) no. 1, p. 179 | DOI:10.2140/ant.2022.16.179
  • Bertola, M.; Tarricone, S. Stokes Manifolds and Cluster Algebras, Communications in Mathematical Physics, Volume 390 (2022) no. 3, p. 1413 | DOI:10.1007/s00220-021-04293-7
  • Schaffhauser, Florent Symmetric Differentials and the Dimension of Hitchin Components for Orbi-Curves, Current Trends in Analysis, its Applications and Computation (2022), p. 129 | DOI:10.1007/978-3-030-87502-2_13
  • Christ, Merlin Ginzburg algebras of triangulated surfaces and perverse schobers, Forum of Mathematics, Sigma, Volume 10 (2022) | DOI:10.1017/fms.2022.1
  • Kydonakis, Georgios From Hyperbolic Dehn Filling to Surgeries in Representation Varieties, In the Tradition of Thurston II (2022), p. 201 | DOI:10.1007/978-3-030-97560-9_6
  • Zuevsky, A. Schottky vertex operator cluster algebras, International Journal of Modern Physics A, Volume 37 (2022) no. 17 | DOI:10.1142/s0217751x22501111
  • Cheung, Man-Wai; Magee, Timothy; Nájera Chávez, Alfredo Compactifications of Cluster Varieties and Convexity, International Mathematics Research Notices, Volume 2022 (2022) no. 14, p. 10858 | DOI:10.1093/imrn/rnab030
  • Shen, Linhui Duals of Semisimple Poisson–Lie Groups and Cluster Theory of Moduli Spaces of G-local Systems, International Mathematics Research Notices, Volume 2022 (2022) no. 18, p. 14295 | DOI:10.1093/imrn/rnab094
  • Bray, Harrison; Canary, Richard; Kao, Lien-Yung; Martone, Giuseppe Counting, equidistribution and entropy gaps at infinity with applications to cusped Hitchin representations, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2022 (2022) no. 791, p. 1 | DOI:10.1515/crelle-2022-0035
  • Musiker, Gregg; Ovenhouse, Nicholas; Zhang, Sylvester W. Double dimer covers on snake graphs from super cluster expansions, Journal of Algebra, Volume 608 (2022), p. 325 | DOI:10.1016/j.jalgebra.2022.05.033
  • Casals, Roger Lagrangian skeleta and plane curve singularities, Journal of Fixed Point Theory and Applications, Volume 24 (2022) no. 2 | DOI:10.1007/s11784-022-00939-8
  • Łukowski, Tomasz; Moerman, Robert; Stalknecht, Jonah Pushforwards via scattering equations with applications to positive geometries, Journal of High Energy Physics, Volume 2022 (2022) no. 10 | DOI:10.1007/jhep10(2022)003
  • Semenyakin, M. Topological string amplitudes and Seiberg-Witten prepotentials from the counting of dimers in transverse flux, Journal of High Energy Physics, Volume 2022 (2022) no. 10 | DOI:10.1007/jhep10(2022)198
  • Kruthoff, Jorrit Higher spin JT gravity and a matrix model dual, Journal of High Energy Physics, Volume 2022 (2022) no. 9 | DOI:10.1007/jhep09(2022)017
  • Neitzke, Andrew; Yan, Fei The quantum UV-IR map for line defects in gl(3)-type class S theories, Journal of High Energy Physics, Volume 2022 (2022) no. 9 | DOI:10.1007/jhep09(2022)081
  • Labourie, François Entropy and affine actions for surface groups, Journal of Topology, Volume 15 (2022) no. 3, p. 1017 | DOI:10.1112/topo.12243
  • Gekhtman, Misha; Shapiro, Michael; Vainshtein, Alek Generalized cluster structures related to the Drinfeld double of GLnGLn, Journal of the London Mathematical Society, Volume 105 (2022) no. 3, p. 1601 | DOI:10.1112/jlms.12542
  • Stecker, Florian; Treib, Nicolaus Domains of discontinuity in oriented flag manifolds, Journal of the London Mathematical Society, Volume 106 (2022) no. 2, p. 1380 | DOI:10.1112/jlms.12602
  • Abenda, Simonetta; Grinevich, Petr G. Real regular KP divisors on M-curves and totally non-negative Grassmannians, Letters in Mathematical Physics, Volume 112 (2022) no. 6 | DOI:10.1007/s11005-022-01609-z
  • Ishibashi, Tsukasa Wilson Lines and Their Laurent Positivity, Lie Theory and Its Applications in Physics, Volume 396 (2022), p. 457 | DOI:10.1007/978-981-19-4751-3_42
  • Burelle, Jean-Philippe; Treib, Nicolaus Schottky presentations of positive representations, Mathematische Annalen, Volume 382 (2022) no. 3-4, p. 1705 | DOI:10.1007/s00208-021-02326-z
  • Finski, Siarhei Spanning trees, cycle-rooted spanning forests on discretizations of flat surfaces and analytic torsion, Mathematische Zeitschrift, Volume 301 (2022) no. 4, p. 3285 | DOI:10.1007/s00209-022-03020-9
  • Bertola, M.; Korotkin, D. On the tau function of the hypergeometric equation, Physica D: Nonlinear Phenomena, Volume 439 (2022), p. 133381 | DOI:10.1016/j.physd.2022.133381
  • Simpson, Carlos The twistor geometry of parabolic structures in rank two, Proceedings - Mathematical Sciences, Volume 132 (2022) no. 2 | DOI:10.1007/s12044-022-00696-1
  • Chekhov, Leonid Olegovich; Shapiro, Michael Zalmanovich; Shibo, Huang Roots of the characteristic equation for the symplectic groupoid, Russian Mathematical Surveys, Volume 77 (2022) no. 3, p. 552 | DOI:10.1070/rm9999
  • Lê, Thang T. Q.; Yu, Tao Quantum traces and embeddings of stated skein algebras into quantum tori, Selecta Mathematica, Volume 28 (2022) no. 4 | DOI:10.1007/s00029-022-00781-3
  • Allegretti, Dylan G. L. Quantization of canonical bases and the quantum symplectic double, manuscripta mathematica, Volume 167 (2022) no. 3-4, p. 613 | DOI:10.1007/s00229-021-01276-9
  • Collier, Brian; Sanders, Andrew (G,P)-Opers and global Slodowy slices, Advances in Mathematics, Volume 377 (2021), p. 107490 | DOI:10.1016/j.aim.2020.107490
  • Allegretti, Dylan G.L. Stability conditions, cluster varieties, and Riemann-Hilbert problems from surfaces, Advances in Mathematics, Volume 380 (2021), p. 107610 | DOI:10.1016/j.aim.2021.107610
  • Gupta, Subhojoy; Mj, Mahan Meromorphic projective structures, grafting and the monodromy map, Advances in Mathematics, Volume 383 (2021), p. 107673 | DOI:10.1016/j.aim.2021.107673
  • Weng, Daping Donaldson-Thomas transformation of Grassmannian, Advances in Mathematics, Volume 383 (2021), p. 107721 | DOI:10.1016/j.aim.2021.107721
  • Pappas, Georgios Volume and symplectic structure for ℓ-adic local systems, Advances in Mathematics, Volume 387 (2021), p. 107836 | DOI:10.1016/j.aim.2021.107836
  • Bao, Huanchen; He, Xuhua Flag manifolds over semifields, Algebra Number Theory, Volume 15 (2021) no. 8, p. 2037 | DOI:10.2140/ant.2021.15.2037
  • Le, Ian Intersection Pairings for Higher Laminations, Algebraic Combinatorics, Volume 4 (2021) no. 5, p. 823 | DOI:10.5802/alco.182
  • Arthamonov, S.; Reshetikhin, N. Superintegrable Systems on Moduli Spaces of Flat Connections, Communications in Mathematical Physics, Volume 386 (2021) no. 3, p. 1337 | DOI:10.1007/s00220-021-04128-5
  • Bertola, M.; Korotkin, D. Tau-Functions and Monodromy Symplectomorphisms, Communications in Mathematical Physics, Volume 388 (2021) no. 1, p. 245 | DOI:10.1007/s00220-021-04224-6
  • Savini, A. Algebraic hull of maximal measurable cocycles of surface groups into Hermitian Lie groups, Geometriae Dedicata, Volume 213 (2021) no. 1, p. 375 | DOI:10.1007/s10711-020-00587-7
  • Zeybek, Hatice Shearing deformations of Hitchin representations and the Atiyah–Bott–Goldman symplectic form, Geometriae Dedicata, Volume 213 (2021) no. 1, p. 401 | DOI:10.1007/s10711-020-00588-6
  • Brunswic, Léo Cauchy-compact flat spacetimes with extreme BTZ, Geometriae Dedicata, Volume 214 (2021) no. 1, p. 571 | DOI:10.1007/s10711-021-00629-8
  • Ballas, Samuel A.; Casella, Alex Gluing equations for real projective structures on 3-manifolds, Geometriae Dedicata, Volume 215 (2021) no. 1, p. 69 | DOI:10.1007/s10711-021-00641-y
  • Dumas, David; Sanders, Andrew Uniformization of compact complex manifolds by Anosov homomorphisms, Geometric and Functional Analysis, Volume 31 (2021) no. 4, p. 815 | DOI:10.1007/s00039-021-00572-6
  • Lam, Wai Yeung Quadratic differentials and circle patterns on complex projective tori, Geometry Topology, Volume 25 (2021) no. 2, p. 961 | DOI:10.2140/gt.2021.25.961
  • Fock, Vladimir; Thomas, Alexander Higher Complex Structures, International Mathematics Research Notices, Volume 2021 (2021) no. 20, p. 15873 | DOI:10.1093/imrn/rnz283
  • Lê, Thang T Q; Thurston, Dylan P; Yu, Tao Lower and Upper Bounds for Positive Bases of Skein Algebras, International Mathematics Research Notices, Volume 2021 (2021) no. 4, p. 3186 | DOI:10.1093/imrn/rnaa082
  • Swoboda, Jan Moduli Spaces of Higgs Bundles – Old and New, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 123 (2021) no. 2, p. 65 | DOI:10.1365/s13291-021-00229-1
  • Pozzetti, Maria Beatrice; Sambarino, Andrés; Wienhard, Anna Conformality for a robust class of non-conformal attractors, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2021 (2021) no. 774, p. 1 | DOI:10.1515/crelle-2020-0029
  • Kim, Hyun Kyu Irreducible self-adjoint representations of quantum Teichmüller space and the phase constants, Journal of Geometry and Physics, Volume 162 (2021), p. 104103 | DOI:10.1016/j.geomphys.2021.104103
  • Damgaard, David; Ferro, Livia; Łukowski, Tomasz; Moerman, Robert Momentum amplituhedron meets kinematic associahedron, Journal of High Energy Physics, Volume 2021 (2021) no. 2 | DOI:10.1007/jhep02(2021)041
  • Cirafici, Michele A note on discrete dynamical systems in theories of class S, Journal of High Energy Physics, Volume 2021 (2021) no. 5 | DOI:10.1007/jhep05(2021)224
  • Stern, Walker H. 2-Segal objects and algebras in spans, Journal of Homotopy and Related Structures, Volume 16 (2021) no. 2, p. 297 | DOI:10.1007/s40062-021-00282-8
  • Gupta, Subhojoy Monodromy groups of CP1‐structures on punctured surfaces, Journal of Topology, Volume 14 (2021) no. 2, p. 538 | DOI:10.1112/topo.12189
  • Galashin, Pavel; Karp, Steven; Lam, Thomas Regularity theorem for totally nonnegative flag varieties, Journal of the American Mathematical Society, Volume 35 (2021) no. 2, p. 513 | DOI:10.1090/jams/983
  • Loftin, John; Zhang, Tengren Coordinates on the augmented moduli space of convex RP2 structures, Journal of the London Mathematical Society, Volume 104 (2021) no. 4, p. 1930 | DOI:10.1112/jlms.12488
  • Inoue, Rei Cluster realization of Weyl groups and q-characters of quantum affine algebras, Letters in Mathematical Physics, Volume 111 (2021) no. 1 | DOI:10.1007/s11005-020-01347-0
  • Ip, Ivan C. H. On tensor product decomposition of positive representations of Uqq~(sl(2,R)), Letters in Mathematical Physics, Volume 111 (2021) no. 2 | DOI:10.1007/s11005-021-01381-6
  • Sun, Zhe Rank n swapping algebra for PGLn Fock–Goncharov X moduli space, Mathematische Annalen, Volume 380 (2021) no. 3-4, p. 1311 | DOI:10.1007/s00208-020-02025-1
  • Kim, Inkang; Kim, Sungwoon Primitive stable representations in higher rank semisimple Lie groups, Revista Matemática Complutense, Volume 34 (2021) no. 3, p. 715 | DOI:10.1007/s13163-020-00372-w
  • Inoue, Rei; Ishibashi, Tsukasa; Oya, Hironori Cluster realizations of Weyl groups and higher Teichmüller theory, Selecta Mathematica, Volume 27 (2021) no. 3 | DOI:10.1007/s00029-021-00630-9
  • Beyrer, Jonas; Pozzetti, Beatrice A collar lemma for partially hyperconvex surface group representations, Transactions of the American Mathematical Society (2021) | DOI:10.1090/tran/8453
  • Bridgeman, Martin; Canary, Richard; Labourie, François Simple length rigidity for Hitchin representations, Advances in Mathematics, Volume 360 (2020), p. 106901 | DOI:10.1016/j.aim.2019.106901
  • Ovenhouse, Nicholas Non-commutative integrability of the Grassmann pentagram map, Advances in Mathematics, Volume 373 (2020), p. 107309 | DOI:10.1016/j.aim.2020.107309
  • Gyoda, Yasuaki; Yurikusa, Toshiya F-Matrices of Cluster Algebras from Triangulated Surfaces, Annals of Combinatorics, Volume 24 (2020) no. 4, p. 649 | DOI:10.1007/s00026-020-00507-2
  • Erdmann, Karin; Skowroński, Andrzej Higher spherical algebras, Archiv der Mathematik, Volume 114 (2020) no. 1, p. 25 | DOI:10.1007/s00013-019-01365-y
  • Cho, So Young; Kim, Hyuna; Kim, Hyun Kyu; Oh, Doeun Laurent Positivity of Quantized Canonical Bases for Quantum Cluster Varieties from Surfaces, Communications in Mathematical Physics, Volume 373 (2020) no. 2, p. 655 | DOI:10.1007/s00220-019-03411-w
  • Coman, Ioana; Pomoni, Elli; Teschner, Jörg Toda Conformal Blocks, Quantum Groups, and Flat Connections, Communications in Mathematical Physics, Volume 375 (2020) no. 2, p. 1117 | DOI:10.1007/s00220-019-03617-y
  • Hollands, Lotte; Neitzke, Andrew Exact WKB and Abelianization for the T3 Equation, Communications in Mathematical Physics, Volume 380 (2020) no. 1, p. 131 | DOI:10.1007/s00220-020-03875-1
  • Bossinger, Lara; Frías-Medina, Bosco; Magee, Timothy; Nájera Chávez, Alfredo Toric degenerations of cluster varieties and cluster duality, Compositio Mathematica, Volume 156 (2020) no. 10, p. 2149 | DOI:10.1112/s0010437x2000740x
  • Whang, Junho Peter Global geometry on moduli of local systems for surfaces with boundary, Compositio Mathematica, Volume 156 (2020) no. 8, p. 1517 | DOI:10.1112/s0010437x20007241
  • Çanakçı, İlke; Schiffler, Ralf Snake graphs and continued fractions, European Journal of Combinatorics, Volume 86 (2020), p. 103081 | DOI:10.1016/j.ejc.2020.103081
  • Sun, Zhe; Wienhard, Anna; Zhang, Tengren Flows on the PGL(V)-Hitchin Component, Geometric and Functional Analysis, Volume 30 (2020) no. 2, p. 588 | DOI:10.1007/s00039-020-00534-4
  • Dumas, David; Sanders, Andrew Geometry of compact complex manifolds associated to generalized quasi-Fuchsian representations, Geometry Topology, Volume 24 (2020) no. 4, p. 1615 | DOI:10.2140/gt.2020.24.1615
  • Ohshika, Ken’ichi; Papadopoulos, Athanase A Glimpse into Thurston’s Work, In the Tradition of Thurston (2020), p. 1 | DOI:10.1007/978-3-030-55928-1_1
  • Yurikusa, Toshiya Density ofg-Vector Cones From Triangulated Surfaces, International Mathematics Research Notices, Volume 2020 (2020) no. 21, p. 8081 | DOI:10.1093/imrn/rnaa008
  • Danciger, Jeffrey; Maloni, Sara; Schlenker, Jean-Marc Polyhedra inscribed in a quadric, Inventiones mathematicae, Volume 221 (2020) no. 1, p. 237 | DOI:10.1007/s00222-020-00948-9
  • Çanakçı, İlke; Lampe, Philipp An expansion formula for type A and Kronecker quantum cluster algebras, Journal of Combinatorial Theory, Series A, Volume 171 (2020), p. 105132 | DOI:10.1016/j.jcta.2019.105132
  • Neitzke, Andrew; Yan, Fei q-nonabelianization for line defects, Journal of High Energy Physics, Volume 2020 (2020) no. 9 | DOI:10.1007/jhep09(2020)153
  • Zickert, Christian K. Fock-Goncharov coordinates for rank two Lie groups, Mathematische Zeitschrift, Volume 294 (2020) no. 1-2, p. 251 | DOI:10.1007/s00209-019-02307-8
  • ERDMANN, KARIN; SKOWROŃSKI, ANDRZEJ ALGEBRAS OF GENERALIZED DIHEDRAL TYPE, Nagoya Mathematical Journal, Volume 240 (2020), p. 181 | DOI:10.1017/nmj.2019.1
  • Gupta, Subhojoy; Mj, Mahan Monodromy representations of meromorphic projective structures, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 5, p. 2069 | DOI:10.1090/proc/14866
  • Magee, Timothy Littlewood–Richardson coefficients via mirror symmetry for cluster varieties, Proceedings of the London Mathematical Society, Volume 121 (2020) no. 3, p. 463 | DOI:10.1112/plms.12329
  • Chekhov, L. O. Fenchel–Nielsen coordinates and Goldman brackets, Russian Mathematical Surveys, Volume 75 (2020) no. 5, p. 929 | DOI:10.1070/rm9972
  • Fraser, Chris Braid group symmetries of Grassmannian cluster algebras, Selecta Mathematica, Volume 26 (2020) no. 2 | DOI:10.1007/s00029-020-0542-3
  • Lu, Jiang-Hua; Yu, Shizhuo Bott–Samelson atlases, total positivity, and Poisson structures on some homogeneous spaces, Selecta Mathematica, Volume 26 (2020) no. 5 | DOI:10.1007/s00029-020-00595-1
  • Allegretti, Dylan; Bridgeland, Tom The monodromy of meromorphic projective structures, Transactions of the American Mathematical Society, Volume 373 (2020) no. 9, p. 6321 | DOI:10.1090/tran/8093
  • Amiot, Claire Cluster algebras and cluster categories associated with triangulated surfaces: an introduction, Winter Braids Lecture Notes, Volume 5 (2020), p. 1 | DOI:10.5802/wbln.21
  • Chekhov, Leonid Olegovich Симплектические структуры на пространствах Тейхмюллера Tg,s,n и кластерные алгебры, Труды Математического института имени В. А. Стеклова, Volume 309 (2020), p. 99 | DOI:10.4213/tm4082
  • Chekhov, Leonid Olegovich Координаты Фенхеля-Нильсена и скобки Голдмана, Успехи математических наук, Volume 75 (2020) no. 5(455), p. 153 | DOI:10.4213/rm9972
  • Fei, Jiarui Cluster algebras, invariant theory, and Kronecker coefficients II, Advances in Mathematics, Volume 341 (2019), p. 536 | DOI:10.1016/j.aim.2018.10.042
  • Paquette, Charles; Schiffler, Ralf Group actions on cluster algebras and cluster categories, Advances in Mathematics, Volume 345 (2019), p. 161 | DOI:10.1016/j.aim.2019.01.009
  • Çanakçı, İlke; Felikson, Anna Infinite rank surface cluster algebras, Advances in Mathematics, Volume 352 (2019), p. 862 | DOI:10.1016/j.aim.2019.06.008
  • Ishibashi, Tsukasa On a Nielsen–Thurston classification theory for cluster modular groups, Annales de l'Institut Fourier, Volume 69 (2019) no. 2, p. 515 | DOI:10.5802/aif.3250
  • Felikson, Anna; Tumarkin, Pavel Geometry of Mutation Classes of Rank 3 Quivers, Arnold Mathematical Journal, Volume 5 (2019) no. 1, p. 37 | DOI:10.1007/s40598-019-00101-2
  • CASELLA, ALEX BRANCHED CAUCHY–RIEMANN STRUCTURES ON ONCE-PUNCTURED TORUS BUNDLES, Bulletin of the Australian Mathematical Society, Volume 100 (2019) no. 1, p. 173 | DOI:10.1017/s0004972719000455
  • Shende, Vivek; Treumann, David; Williams, Harold; Zaslow, Eric Cluster varieties from Legendrian knots, Duke Mathematical Journal, Volume 168 (2019) no. 15 | DOI:10.1215/00127094-2019-0027
  • Rietsch, K.; Williams, L. Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Mathematical Journal, Volume 168 (2019) no. 18 | DOI:10.1215/00127094-2019-0028
  • Haraway,, Robert C.; Tillmann, Stephan Tessellating the Moduli Space of Strictly Convex Projective Structures on the Once-Punctured Torus, Experimental Mathematics, Volume 28 (2019) no. 3, p. 369 | DOI:10.1080/10586458.2017.1409671
  • LE, IAN CLUSTER STRUCTURES ON HIGHER TEICHMULLER SPACES FOR CLASSICAL GROUPS, Forum of Mathematics, Sigma, Volume 7 (2019) | DOI:10.1017/fms.2019.5
  • Allegretti, Dylan G. L. Laminations from the symplectic double, Geometriae Dedicata, Volume 199 (2019) no. 1, p. 27 | DOI:10.1007/s10711-018-0339-0
  • Danciger, Jeffrey; Zhang, Tengren Affine actions with Hitchin linear part, Geometric and Functional Analysis, Volume 29 (2019) no. 5, p. 1369 | DOI:10.1007/s00039-019-00511-6
  • Dyckerhoff, Tobias; Kapranov, Mikhail Discrete 2-Segal Spaces, Higher Segal Spaces, Volume 2244 (2019), p. 31 | DOI:10.1007/978-3-030-27124-4_3
  • Parreau, Anne On triples of ideal chambers in A2-buildings, Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial, Volume 17 (2019) no. 2, p. 109 | DOI:10.2140/iig.2019.17.109
  • Le, Ian An Approach to Higher Teichmüller Spaces for General Groups, International Mathematics Research Notices, Volume 2019 (2019) no. 16, p. 4899 | DOI:10.1093/imrn/rnx249
  • Çanakçı, İlke; Schiffler, Ralf Snake Graph Calculus and Cluster Algebras from Surfaces III: Band Graphs and Snake Rings, International Mathematics Research Notices, Volume 2019 (2019) no. 4, p. 1145 | DOI:10.1093/imrn/rnx157
  • Schrader, Gus; Shapiro, Alexander A cluster realization of Uq(sln) U q ( sl n ) from quantum character varieties, Inventiones mathematicae, Volume 216 (2019) no. 3, p. 799 | DOI:10.1007/s00222-019-00857-6
  • Aparicio-Arroyo, Marta; Bradlow, Steven; Collier, Brian; García-Prada, Oscar; Gothen, Peter B.; Oliveira, André SO(p,q)-Higgs bundles and Higher Teichmüller components, Inventiones mathematicae, Volume 218 (2019) no. 1, p. 197 | DOI:10.1007/s00222-019-00885-2
  • Blommaert, Andreas; Mertens, Thomas G.; Verschelde, Henri Fine structure of Jackiw-Teitelboim quantum gravity, Journal of High Energy Physics, Volume 2019 (2019) no. 9 | DOI:10.1007/jhep09(2019)066
  • Kim, Hyun Kyu Finite dimensional quantum Teichmüller space from the quantum torus at root of unity, Journal of Pure and Applied Algebra, Volume 223 (2019) no. 3, p. 1337 | DOI:10.1016/j.jpaa.2018.08.011
  • Allegretti, Dylan G. L. Voros symbols as cluster coordinates, Journal of Topology, Volume 12 (2019) no. 4, p. 1031 | DOI:10.1112/topo.12106
  • Martone, Giuseppe Positive configurations of flags in a building and limits of positive representations, Mathematische Zeitschrift, Volume 293 (2019) no. 3-4, p. 1337 | DOI:10.1007/s00209-019-02286-w
  • NAGAO, KENTARO; TERASHIMA, YUJI; YAMAZAKI, MASAHITO HYPERBOLIC 3-MANIFOLDS AND CLUSTER ALGEBRAS, Nagoya Mathematical Journal, Volume 235 (2019), p. 1 | DOI:10.1017/nmj.2017.39
  • Abenda, Simonetta; Grinevich, Petr G. Reducible M-curves for Le-networks in the totally-nonnegative Grassmannian and KP-II multiline solitons, Selecta Mathematica, Volume 25 (2019) no. 3 | DOI:10.1007/s00029-019-0488-5
  • Le, Ian; Fraser, Chris Tropicalization of positive Grassmannians, Selecta Mathematica, Volume 25 (2019) no. 5 | DOI:10.1007/s00029-019-0514-7
  • Allegretti, Dylan G. L. Categorified canonical bases and framed BPS states, Selecta Mathematica, Volume 25 (2019) no. 5 | DOI:10.1007/s00029-019-0518-3
  • Mandel, Travis Cluster algebras are Cox rings, manuscripta mathematica, Volume 160 (2019) no. 1-2, p. 153 | DOI:10.1007/s00229-018-1054-8
  • Goncharov, Alexander; Shen, Linhui Donaldson–Thomas transformations of moduli spaces of G-local systems, Advances in Mathematics, Volume 327 (2018), p. 225 | DOI:10.1016/j.aim.2017.06.017
  • Berenstein, Arkady; Retakh, Vladimir Noncommutative marked surfaces, Advances in Mathematics, Volume 328 (2018), p. 1010 | DOI:10.1016/j.aim.2018.02.014
  • Allegretti, Dylan G.L. Stability conditions and cluster varieties from quivers of type A, Advances in Mathematics, Volume 337 (2018), p. 260 | DOI:10.1016/j.aim.2018.08.017
  • Barnard, Emily; Meehan, Emily; Reading, Nathan; Viel, Shira Universal Geometric Coefficients for the Four-Punctured Sphere, Annals of Combinatorics, Volume 22 (2018) no. 1, p. 1 | DOI:10.1007/s00026-018-0378-0
  • Aparicio-Arroyo, Marta; Bradlow, Steven; Collier, Brian; García-Prada, Oscar; Gothen, Peter B.; Oliveira, André Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars, Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, p. 666 | DOI:10.1016/j.crma.2018.04.024
  • BRIDGEMAN, MARTIN; CANARY, RICHARD; SAMBARINO, ANDRÉS An introduction to pressure metrics for higher Teichmüller spaces, Ergodic Theory and Dynamical Systems, Volume 38 (2018) no. 6, p. 2001 | DOI:10.1017/etds.2016.111
  • Wienhard, Anna; Zhang, Tengren Deforming convex real projective structures, Geometriae Dedicata, Volume 192 (2018) no. 1, p. 327 | DOI:10.1007/s10711-017-0243-z
  • Bonahon, Francis; Kim, Inkang The Goldman and Fock-Goncharov coordinates for convex projective structures on surfaces, Geometriae Dedicata, Volume 192 (2018) no. 1, p. 43 | DOI:10.1007/s10711-017-0233-1
  • Danciger, Jeffrey; Guéritaud, François; Kassel, Fanny Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geometriae Dedicata, Volume 192 (2018) no. 1, p. 87 | DOI:10.1007/s10711-017-0294-1
  • Burelle, Jean-Philippe; Treib, Nicolaus Schottky groups and maximal representations, Geometriae Dedicata, Volume 195 (2018) no. 1, p. 215 | DOI:10.1007/s10711-017-0285-2
  • Labourie, François Goldman algebra, opers and the swapping algebra, Geometry Topology, Volume 22 (2018) no. 3, p. 1267 | DOI:10.2140/gt.2018.22.1267
  • Schiffler, Ralf Cluster Algebras from Surfaces, Homological Methods, Representation Theory, and Cluster Algebras (2018), p. 65 | DOI:10.1007/978-3-319-74585-5_3
  • Bucher, Eric; Mills, Matthew R. Maximal green sequences for cluster algebras associated with the n-torus with arbitrary punctures, Journal of Algebraic Combinatorics, Volume 47 (2018) no. 3, p. 345 | DOI:10.1007/s10801-017-0778-y
  • Mikhaylov, Victor Teichmüller TQFT vs. Chern-Simons theory, Journal of High Energy Physics, Volume 2018 (2018) no. 4 | DOI:10.1007/jhep04(2018)085
  • Yamazaki, Masahito Quantum trilogy: discrete Toda, Y-system and chaos, Journal of Physics A: Mathematical and Theoretical, Volume 51 (2018) no. 5, p. 053002 | DOI:10.1088/1751-8121/aaa08e
  • Bucher, Eric; Yakimov, Milen Recovering the topology of surfaces from cluster algebras, Mathematische Zeitschrift, Volume 288 (2018) no. 1-2, p. 565 | DOI:10.1007/s00209-017-1901-4
  • Chekhov, Leonid; Mazzocco, Marta Colliding holes in Riemann surfaces and quantum cluster algebras, Nonlinearity, Volume 31 (2018) no. 1, p. 54 | DOI:10.1088/1361-6544/aa9729
  • Reading, Nathan; Stella, Salvatore Initial-seed recursions and dualities for d-vectors, Pacific Journal of Mathematics, Volume 293 (2018) no. 1, p. 179 | DOI:10.2140/pjm.2018.293.179
  • Franco, Sebastián; Musiker, Gregg Higher cluster categories and QFT dualities, Physical Review D, Volume 98 (2018) no. 4 | DOI:10.1103/physrevd.98.046021
  • Ip, Ivan C. H. Cluster realization of Uq(g) U q ( g ) and factorizations of the universal R-matrix, Selecta Mathematica, Volume 24 (2018) no. 5, p. 4461 | DOI:10.1007/s00029-018-0432-0
  • Allegretti, Dylan G.L.; Kim, Hyun Kyu A duality map for quantum cluster varieties from surfaces, Advances in Mathematics, Volume 306 (2017), p. 1164 | DOI:10.1016/j.aim.2016.11.007
  • Canakci, Ilke; Schroll, Sibylle Extensions in Jacobian algebras and cluster categories of marked surfaces, Advances in Mathematics, Volume 313 (2017), p. 1 | DOI:10.1016/j.aim.2017.03.016
  • Felikson, Anna; Tumarkin, Pavel Bases for cluster algebras from orbifolds, Advances in Mathematics, Volume 318 (2017), p. 191 | DOI:10.1016/j.aim.2017.07.025
  • Labourie, François Cyclic surfaces and Hitchin components in rank 2, Annals of Mathematics, Volume 185 (2017) no. 1 | DOI:10.4007/annals.2017.185.1.1
  • Romo, Mauricio Cluster partition function and invariants of 3-manifolds, Chinese Annals of Mathematics, Series B, Volume 38 (2017) no. 4, p. 937 | DOI:10.1007/s11401-017-1105-6
  • Gabella, Maxime Quantum Holonomies from Spectral Networks and Framed BPS States, Communications in Mathematical Physics, Volume 351 (2017) no. 2, p. 563 | DOI:10.1007/s00220-016-2729-1
  • Lai, Tri; Musiker, Gregg Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver, Communications in Mathematical Physics, Volume 356 (2017) no. 3, p. 823 | DOI:10.1007/s00220-017-2993-8
  • Qiu, Yu; Zhou, Yu Cluster categories for marked surfaces: punctured case, Compositio Mathematica, Volume 153 (2017) no. 9, p. 1779 | DOI:10.1112/s0010437x17007229
  • Qin, Fan Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Mathematical Journal, Volume 166 (2017) no. 12 | DOI:10.1215/00127094-2017-0006
  • Guéritaud, François; Guichard, Olivier; Kassel, Fanny; Wienhard, Anna Anosov representations and proper actions, Geometry Topology, Volume 21 (2017) no. 1, p. 485 | DOI:10.2140/gt.2017.21.485
  • Zuevsky, Alexander Clusterization of Correlation Functions, Groups, Modules, and Model Theory - Surveys and Recent Developments (2017), p. 459 | DOI:10.1007/978-3-319-51718-6_28
  • Sun, Zhe RanknSwapping Algebra for the PSL(n, ℝ) Hitchin Component, International Mathematics Research Notices, Volume 2017 (2017) no. 2, p. 583 | DOI:10.1093/imrn/rnw064
  • Cheung, Man Wai; Gross, Mark; Muller, Greg; Musiker, Gregg; Rupel, Dylan; Stella, Salvatore; Williams, Harold The greedy basis equals the theta basis: A rank two haiku, Journal of Combinatorial Theory, Series A, Volume 145 (2017), p. 150 | DOI:10.1016/j.jcta.2016.08.004
  • Fleury, Thiago; Komatsu, Shota Hexagonalization of correlation functions, Journal of High Energy Physics, Volume 2017 (2017) no. 1 | DOI:10.1007/jhep01(2017)130
  • Neitzke, Andrew; Yan, Fei Line defect Schur indices, Verlinde algebras and U(1)r fixed points, Journal of High Energy Physics, Volume 2017 (2017) no. 11 | DOI:10.1007/jhep11(2017)035
  • Gabella, Maxime; Longhi, Pietro; Park, Chan Y.; Yamazaki, Masahito BPS graphs: from spectral networks to BPS quivers, Journal of High Energy Physics, Volume 2017 (2017) no. 7 | DOI:10.1007/jhep07(2017)032
  • Gross, Mark; Hacking, Paul; Keel, Sean; Kontsevich, Maxim Canonical bases for cluster algebras, Journal of the American Mathematical Society, Volume 31 (2017) no. 2, p. 497 | DOI:10.1090/jams/890
  • Fei, Jiarui Cluster algebras and semi-invariant rings II: projections, Mathematische Zeitschrift, Volume 285 (2017) no. 3-4, p. 939 | DOI:10.1007/s00209-016-1733-7
  • Guichard, Olivier; Guéritaud, François; Kassel, Fanny; Wienhard, Anna Compactification of certain Clifford-Klein forms of reductive homogeneous spaces, Michigan Mathematical Journal, Volume 66 (2017) no. 1 | DOI:10.1307/mmj/1488510025
  • Muller, Greg; Speyer, David E. The twist for positroid varieties, Proceedings of the London Mathematical Society, Volume 115 (2017) no. 5, p. 1014 | DOI:10.1112/plms.12056
  • Glick, Max; Rupel, Dylan Introduction to Cluster Algebras, Symmetries and Integrability of Difference Equations (2017), p. 325 | DOI:10.1007/978-3-319-56666-5_7
  • Kassel, Adrien; Kenyon, Richard Random curves on surfaces induced from the Laplacian determinant, The Annals of Probability, Volume 45 (2017) no. 2 | DOI:10.1214/15-aop1078
  • Fraser, Chris Quasi-homomorphisms of cluster algebras, Advances in Applied Mathematics, Volume 81 (2016), p. 40 | DOI:10.1016/j.aam.2016.06.005
  • Safronov, Pavel Quasi-Hamiltonian reduction via classical Chern–Simons theory, Advances in Mathematics, Volume 287 (2016), p. 733 | DOI:10.1016/j.aim.2015.09.031
  • Kim, Hyun Kyu The dilogarithmic central extension of the Ptolemy–Thompson group via the Kashaev quantization, Advances in Mathematics, Volume 293 (2016), p. 529 | DOI:10.1016/j.aim.2016.02.016
  • Leclerc, B. Cluster structures on strata of flag varieties, Advances in Mathematics, Volume 300 (2016), p. 190 | DOI:10.1016/j.aim.2016.03.018
  • Fock, V.V.; Goncharov, A.B. Symplectic double for moduli spaces of G-local systems on surfaces, Advances in Mathematics, Volume 300 (2016), p. 505 | DOI:10.1016/j.aim.2016.03.026
  • Bezrukavnikov, Roman; Kapranov, Mikhail Microlocal sheaves and quiver varieties, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 25 (2016) no. 2-3, p. 473 | DOI:10.5802/afst.1502
  • Goncharov, A. B. Exponential complexes, period morphisms, and characteristic classes, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 25 (2016) no. 2-3, p. 619 | DOI:10.5802/afst.1507
  • Bucher, Eric Maximal Green Sequences for Cluster Algebras Associated to Orientable Surfaces with Empty Boundary, Arnold Mathematical Journal, Volume 2 (2016) no. 4, p. 487 | DOI:10.1007/s40598-016-0057-3
  • Penner, R. Moduli spaces and macromolecules, Bulletin of the American Mathematical Society, Volume 53 (2016) no. 2, p. 217 | DOI:10.1090/bull/1524
  • Ip, Ivan C. H. Positive Casimir and Central Characters of Split Real Quantum Groups, Communications in Mathematical Physics, Volume 344 (2016) no. 3, p. 857 | DOI:10.1007/s00220-016-2639-2
  • Le, Ian Higher laminations and affine buildings, Geometry Topology, Volume 20 (2016) no. 3, p. 1673 | DOI:10.2140/gt.2016.20.1673
  • Heusener, Michael; Muñoz, Vicente; Porti, Joan The SL(3,C)-character variety of the figure eight knot, Illinois Journal of Mathematics, Volume 60 (2016) no. 1 | DOI:10.1215/ijm/1498032024
  • Zuevsky, Alexander Cluster algebras based on vertex operator algebras, International Journal of Modern Physics B, Volume 30 (2016) no. 28n29, p. 1640030 | DOI:10.1142/s0217979216400300
  • Lê, Thang T. Q. On Positivity of Kauffman Bracket Skein Algebras of Surfaces, International Mathematics Research Notices (2016), p. rnw280 | DOI:10.1093/imrn/rnw280
  • Iwaki, Kohei; Nakanishi, Tomoki Exact WKB Analysis and Cluster Algebras II: Simple Poles, Orbifold Points, and Generalized Cluster Algebras, International Mathematics Research Notices, Volume 2016 (2016) no. 14, p. 4375 | DOI:10.1093/imrn/rnv270
  • Lampe, Philipp Diophantine equations via cluster transformations, Journal of Algebra, Volume 462 (2016), p. 320 | DOI:10.1016/j.jalgebra.2016.04.033
  • Xu, Binbin Central extension of mapping class group via Chekhov–Fock quantization, Journal of Geometry and Physics, Volume 110 (2016), p. 9 | DOI:10.1016/j.geomphys.2016.07.002
  • Dimofte, Tudor; Gabella, Maxime; Goncharov, Alexander B. K-decompositions and 3d gauge theories, Journal of High Energy Physics, Volume 2016 (2016) no. 11 | DOI:10.1007/jhep11(2016)151
  • Hollands, Lotte; Neitzke, Andrew Spectral Networks and Fenchel–Nielsen Coordinates, Letters in Mathematical Physics, Volume 106 (2016) no. 6, p. 811 | DOI:10.1007/s11005-016-0842-x
  • Kim, Hyun Kyu Ratio coordinates for higher Teichmüller spaces, Mathematische Zeitschrift, Volume 283 (2016) no. 1-2, p. 469 | DOI:10.1007/s00209-015-1607-4
  • Zickert, Christian K. Ptolemy coordinates, Dehn invariant and the A-polynomial, Mathematische Zeitschrift, Volume 283 (2016) no. 1-2, p. 515 | DOI:10.1007/s00209-015-1608-3
  • Dimofte, Tudor 3d Superconformal Theories from Three-Manifolds, New Dualities of Supersymmetric Gauge Theories (2016), p. 339 | DOI:10.1007/978-3-319-18769-3_11
  • Teschner, Jörg Supersymmetric Gauge Theories, Quantization of Mflat , and Conformal Field Theory, New Dualities of Supersymmetric Gauge Theories (2016), p. 375 | DOI:10.1007/978-3-319-18769-3_12
  • Neitzke, Andrew Hitchin Systems in N=2 Field Theory, New Dualities of Supersymmetric Gauge Theories (2016), p. 53 | DOI:10.1007/978-3-319-18769-3_3
  • Morozov, A. A. The properties of conformal blocks, the AGT hypothesis, and knot polynomials, Physics of Particles and Nuclei, Volume 47 (2016) no. 5, p. 775 | DOI:10.1134/s106377961605004x
  • Mandel, Travis Tropical theta functions and log Calabi–Yau surfaces, Selecta Mathematica, Volume 22 (2016) no. 3, p. 1289 | DOI:10.1007/s00029-015-0221-y
  • Fock, V. V.; Goncharov, A. B. Cluster Poisson varieties at infinity, Selecta Mathematica, Volume 22 (2016) no. 4, p. 2569 | DOI:10.1007/s00029-016-0282-6
  • Hong, Jiuzu; Shen, Linhui Tensor invariants, saturation problems, and Dynkin automorphisms, Advances in Mathematics, Volume 285 (2015), p. 629 | DOI:10.1016/j.aim.2015.08.015
  • Garoufalidis, Stavros; Goerner, Matthias; Zickert, Christian The Ptolemy field of 3–manifold representations, Algebraic Geometric Topology, Volume 15 (2015) no. 1, p. 371 | DOI:10.2140/agt.2015.15.371
  • Garoufalidis, Stavros; Goerner, Matthias; Zickert, Christian Gluing equations for PGL(n,ℂ)–representations of 3–manifolds, Algebraic Geometric Topology, Volume 15 (2015) no. 1, p. 565 | DOI:10.2140/agt.2015.15.565
  • Lee, Kyungyong; Schiffler, Ralf Positivity for cluster algebras, Annals of Mathematics (2015), p. 73 | DOI:10.4007/annals.2015.182.1.2
  • Dimofte, Tudor Complex Chern–Simons Theory at Level k via the 3d–3d Correspondence, Communications in Mathematical Physics, Volume 339 (2015) no. 2, p. 619 | DOI:10.1007/s00220-015-2401-1
  • Benini, Francesco; Park, Daniel S.; Zhao, Peng Cluster Algebras from Dualities of 2d N N = (2, 2) Quiver Gauge Theories, Communications in Mathematical Physics, Volume 340 (2015) no. 1, p. 47 | DOI:10.1007/s00220-015-2452-3
  • Gross, Mark; Hacking, Paul; Keel, Sean Moduli of surfaces with an anti-canonical cycle, Compositio Mathematica, Volume 151 (2015) no. 2, p. 265 | DOI:10.1112/s0010437x14007611
  • Wolpert, Scott A. Products of twists, geodesic lengths and Thurston shears, Compositio Mathematica, Volume 151 (2015) no. 2, p. 313 | DOI:10.1112/s0010437x1400757x
  • Garoufalidis, Stavros; Thurston, Dylan P.; Zickert, Christian K. The complex volume of SL(n,C)-representations of 3-manifolds, Duke Mathematical Journal, Volume 164 (2015) no. 11 | DOI:10.1215/00127094-3121185
  • Kitayama, Takahiro; Terashima, Yuji Torsion functions on moduli spaces in view of the cluster algebra, Geometriae Dedicata, Volume 175 (2015) no. 1, p. 125 | DOI:10.1007/s10711-014-0032-x
  • Strubel, Tobias Fenchel–Nielsen coordinates for maximal representations, Geometriae Dedicata, Volume 176 (2015) no. 1, p. 45 | DOI:10.1007/s10711-014-9959-1
  • Manon, Christopher Compactifications of character varieties and skein relations on conformal blocks, Geometriae Dedicata, Volume 179 (2015) no. 1, p. 335 | DOI:10.1007/s10711-015-0084-6
  • Zhang, Tengren Degeneration of Hitchin representations along internal sequences, Geometric and Functional Analysis, Volume 25 (2015) no. 5, p. 1588 | DOI:10.1007/s00039-015-0342-7
  • Goncharov, Alexander; Shen, Linhui Geometry of canonical bases and mirror symmetry, Inventiones mathematicae, Volume 202 (2015) no. 2, p. 487 | DOI:10.1007/s00222-014-0568-2
  • Dupont, Grégoire; Palesi, Frédéric Quasi-cluster algebras from non-orientable surfaces, Journal of Algebraic Combinatorics, Volume 42 (2015) no. 2, p. 429 | DOI:10.1007/s10801-015-0586-1
  • Galakhov, D.; Mironov, A.; Morozov, A. Wall-crossing invariants: from quantum mechanics to knots, Journal of Experimental and Theoretical Physics, Volume 120 (2015) no. 3, p. 549 | DOI:10.1134/s1063776115030206
  • Coman, Ioana; Gabella, Maxime; Teschner, Jörg Line operators in theories of class S S , quantized moduli space of flat connections, and Toda field theory, Journal of High Energy Physics, Volume 2015 (2015) no. 10 | DOI:10.1007/jhep10(2015)143
  • Brüstle, Thomas; Qiu, Yu Tagged mapping class groups: Auslander–Reiten translation, Mathematische Zeitschrift, Volume 279 (2015) no. 3-4, p. 1103 | DOI:10.1007/s00209-015-1405-z
  • Canakci, Ilke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Mathematische Zeitschrift, Volume 281 (2015) no. 1-2, p. 55 | DOI:10.1007/s00209-015-1475-y
  • Canakci, Ilke; Lee, Kyungyong; Schiffler, Ralf On cluster algebras from unpunctured surfaces with one marked point, Proceedings of the American Mathematical Society, Series B, Volume 2 (2015) no. 3, p. 35 | DOI:10.1090/bproc/21
  • Heusener, Michael Some recent results about the SL n (ℂ)–representation spaces of knot groups, Séminaire de théorie spectrale et géométrie, Volume 32 (2015), p. 137 | DOI:10.5802/tsg.307
  • Williams, H. Cluster characters and the combinatorics of Toda systems, Theoretical and Mathematical Physics, Volume 185 (2015) no. 3, p. 1789 | DOI:10.1007/s11232-015-0379-7
  • Manon, Christopher Newton-Okounkov polyhedra for character varieties and configuration spaces, Transactions of the American Mathematical Society, Volume 368 (2015) no. 8, p. 5979 | DOI:10.1090/tran/6698
  • Williams, Harold Характеры кластеров и комбинаторика систем Тоды, Теоретическая и математическая физика, Volume 185 (2015) no. 3, p. 495 | DOI:10.4213/tmf8892
  • Funar, Louis; Kashaev, Rinat M. Centrally extended mapping class groups from quantum Teichmüller theory, Advances in Mathematics, Volume 252 (2014), p. 260 | DOI:10.1016/j.aim.2013.10.015
  • Gaiotto, Davide; Moore, Gregory W.; Neitzke, Andrew Spectral Networks and Snakes, Annales Henri Poincaré, Volume 15 (2014) no. 1, p. 61 | DOI:10.1007/s00023-013-0238-8
  • Dimofte, Tudor; Gaiotto, Davide; Gukov, Sergei Gauge Theories Labelled by Three-Manifolds, Communications in Mathematical Physics, Volume 325 (2014) no. 2, p. 367 | DOI:10.1007/s00220-013-1863-2
  • Kenyon, Richard Conformal Invariance of Loops in the Double-Dimer Model, Communications in Mathematical Physics, Volume 326 (2014) no. 2, p. 477 | DOI:10.1007/s00220-013-1881-0
  • Bonahon, Francis; Dreyer, Guillaume Parameterizing Hitchin components, Duke Mathematical Journal, Volume 163 (2014) no. 15 | DOI:10.1215/0012794-2838654
  • Biswas, Indranil; Florentino, Carlos; Lawton, Sean; Logares, Marina The topology of parabolic character varieties of free groups, Geometriae Dedicata, Volume 168 (2014) no. 1, p. 143 | DOI:10.1007/s10711-012-9822-1
  • Bergeron, Nicolas; Falbel, Elisha; Guilloux, Antonin Tetrahedra of flags, volume and homology of SL(3), Geometry Topology, Volume 18 (2014) no. 4, p. 1911 | DOI:10.2140/gt.2014.18.1911
  • Neitzke, Andrew Notes on a New Construction of Hyperkahler Metrics, Homological Mirror Symmetry and Tropical Geometry, Volume 15 (2014), p. 351 | DOI:10.1007/978-3-319-06514-4_8
  • Matherne, J. P.; Muller, G. Computing Upper Cluster Algebras, International Mathematics Research Notices (2014) | DOI:10.1093/imrn/rnu027
  • Balasubramanian, Aswin The Euler anomaly and scale factors in Liouville/Toda CFTs, Journal of High Energy Physics, Volume 2014 (2014) no. 4 | DOI:10.1007/jhep04(2014)127
  • Galakhov, D.; Mironov, A.; Morozov, A. S-duality and modular transformation as a non-perturbative deformation of the ordinary pq-duality, Journal of High Energy Physics, Volume 2014 (2014) no. 6 | DOI:10.1007/jhep06(2014)050
  • Anokhina, A.; Morozov, A. Towards ℛ-matrix construction of Khovanov-Rozansky polynomials I. Primary T-deformation of HOMFLY, Journal of High Energy Physics, Volume 2014 (2014) no. 7 | DOI:10.1007/jhep07(2014)063
  • Kim, Joonho; Lee, Sangmin Positroid stratification of orthogonal Grassmannian and ABJM amplitudes, Journal of High Energy Physics, Volume 2014 (2014) no. 9 | DOI:10.1007/jhep09(2014)085
  • Córdova, Clay; Neitzke, Andrew Line defects, tropicalization, and multi-centered quiver quantum mechanics, Journal of High Energy Physics, Volume 2014 (2014) no. 9 | DOI:10.1007/jhep09(2014)099
  • HIKAMI, KAZUHIRO; INOUE, REI CLUSTER ALGEBRA AND COMPLEX VOLUME OF ONCE-PUNCTURED TORUS BUNDLES AND 2-BRIDGE LINKS, Journal of Knot Theory and Its Ramifications, Volume 23 (2014) no. 01, p. 1450006 | DOI:10.1142/s0218216514500060
  • Iwaki, Kohei; Nakanishi, Tomoki Exact WKB analysis and cluster algebras, Journal of Physics A: Mathematical and Theoretical, Volume 47 (2014) no. 47, p. 474009 | DOI:10.1088/1751-8113/47/47/474009
  • Leoni, Megan; Musiker, Gregg; Neel, Seth; Turner, Paxton Aztec castles and the dP3 quiver, Journal of Physics A: Mathematical and Theoretical, Volume 47 (2014) no. 47, p. 474011 | DOI:10.1088/1751-8113/47/47/474011
  • Kenyon, Richard; Wilson, David Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs, Journal of the American Mathematical Society, Volume 28 (2014) no. 4, p. 985 | DOI:10.1090/s0894-0347-2014-00819-5
  • Gothen, Peter B. Representations of surface groups and Higgs bundles, Moduli Spaces (2014), p. 151 | DOI:10.1017/cbo9781107279544.004
  • Mironov, Andrei; Morozov, Alexei; Sleptsov, Alexei; Smirnov, Andrey On genus expansion of superpolynomials, Nuclear Physics B, Volume 889 (2014), p. 757 | DOI:10.1016/j.nuclphysb.2014.11.003
  • Leclerc, Bernard; Williams, Lauren K. Cluster algebras, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9676 | DOI:10.1073/pnas.1410635111
  • Fomin, Sergey; Pylyavskyy, Pavlo Webs on surfaces, rings of invariants, and clusters, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9680 | DOI:10.1073/pnas.1313068111
  • Goodearl, Kenneth R.; Yakimov, Milen T. Quantum cluster algebras and quantum nilpotent algebras, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9696 | DOI:10.1073/pnas.1313071111
  • Neitzke, Andrew Cluster-like coordinates in supersymmetric quantum field theory, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9717 | DOI:10.1073/pnas.1313073111
  • Thurston, Dylan Paul Positive basis for surface skein algebras, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9725 | DOI:10.1073/pnas.1313070111
  • Terashima, Y.; Yamazaki, M. N = 2 theories from cluster algebras, Progress of Theoretical and Experimental Physics, Volume 2014 (2014) no. 2, p. 23B01 | DOI:10.1093/ptep/ptt115
  • Nekrasov, N. A.; Rosly, A. A.; Shatashvili, S. L. Darboux coordinates, Yang-Yang functional, and gauge theory, Theoretical and Mathematical Physics, Volume 181 (2014) no. 1, p. 1206 | DOI:10.1007/s11232-014-0209-3
  • Некрасов, Никита Александрович; Nekrasov, Nikita Alexandrovich; Рослый, Алексей Андреевич; Roslyi, Aleksei Andreevich; Шаташвили, Самсон Лулиевич; Shatashvili, Samson Lulievich Координаты Дарбу, функционал Янга - Янга и калибровочная теория, Теоретическая и математическая физика, Volume 181 (2014) no. 1, p. 86 | DOI:10.4213/tmf8648
  • Muller, Greg Locally acyclic cluster algebras, Advances in Mathematics, Volume 233 (2013) no. 1, p. 207 | DOI:10.1016/j.aim.2012.10.002
  • Gaiotto, Davide; Moore, Gregory W.; Neitzke, Andrew Wall-crossing, Hitchin systems, and the WKB approximation, Advances in Mathematics, Volume 234 (2013), p. 239 | DOI:10.1016/j.aim.2012.09.027
  • Dreyer, Guillaume Length functions of Hitchin representations, Algebraic Geometric Topology, Volume 13 (2013) no. 6, p. 3153 | DOI:10.2140/agt.2013.13.3153
  • Gaiotto, Davide; Moore, Gregory W.; Neitzke, Andrew Spectral Networks, Annales Henri Poincaré, Volume 14 (2013) no. 7, p. 1643 | DOI:10.1007/s00023-013-0239-7
  • Chekhov, Leonid; Mazzocco, Marta Poisson Algebras of Block-Upper-Triangular Bilinear Forms and Braid Group Action, Communications in Mathematical Physics, Volume 322 (2013) no. 1, p. 49 | DOI:10.1007/s00220-013-1757-3
  • Fontaine, Bruce; Kamnitzer, Joel; Kuperberg, Greg Buildings, spiders, and geometric Satake, Compositio Mathematica, Volume 149 (2013) no. 11, p. 1871 | DOI:10.1112/s0010437x13007136
  • Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Bases for cluster algebras from surfaces, Compositio Mathematica, Volume 149 (2013) no. 2, p. 217 | DOI:10.1112/s0010437x12000450
  • BARCELO, HÉLÈNE; SEVERS, CHRISTOPHER; WHITE, JACOB A. THE DISCRETE FUNDAMENTAL GROUP OF THE ASSOCIAHEDRON, AND THE EXCHANGE MODULE, International Journal of Algebra and Computation, Volume 23 (2013) no. 04, p. 745 | DOI:10.1142/s0218196713400079
  • Musiker, Gregg; Williams, Lauren Matrix Formulae and Skein Relations for Cluster Algebras from Surfaces, International Mathematics Research Notices, Volume 2013 (2013) no. 13, p. 2891 | DOI:10.1093/imrn/rns118
  • Canakci, Ilke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces, Journal of Algebra, Volume 382 (2013), p. 240 | DOI:10.1016/j.jalgebra.2013.02.018
  • Marshakov, A. Lie groups, cluster variables and integrable systems, Journal of Geometry and Physics, Volume 67 (2013), p. 16 | DOI:10.1016/j.geomphys.2012.12.003
  • Nie, Xin The quasi-Poisson Goldman formula, Journal of Geometry and Physics, Volume 74 (2013), p. 1 | DOI:10.1016/j.geomphys.2013.06.010
  • Cirafici, Michele Line defects and (framed) BPS quivers, Journal of High Energy Physics, Volume 2013 (2013) no. 11 | DOI:10.1007/jhep11(2013)141
  • Dimofte, Tudor; Gukov, Sergei Chern-Simons theory and S-duality, Journal of High Energy Physics, Volume 2013 (2013) no. 5 | DOI:10.1007/jhep05(2013)109
  • Barot, M.; Geiss, Ch.; Jasso, G. Tubular cluster algebras II: Exponential growth, Journal of Pure and Applied Algebra, Volume 217 (2013) no. 10, p. 1825 | DOI:10.1016/j.jpaa.2012.12.012
  • Marché, Julien; Will, Pierre Configurations of flags and representations of surface groups in complex hyperbolic geometry, Geometriae Dedicata, Volume 156 (2012) no. 1, p. 49 | DOI:10.1007/s10711-011-9589-9
  • Muller, Greg The Weil–Petersson Form on an Acyclic Cluster Variety, International Mathematics Research Notices, Volume 2012 (2012) no. 16, p. 3680 | DOI:10.1093/imrn/rnr155
  • Guichard, Olivier; Wienhard, Anna Anosov representations: domains of discontinuity and applications, Inventiones mathematicae, Volume 190 (2012) no. 2, p. 357 | DOI:10.1007/s00222-012-0382-7
  • Xie, Dan; Yamazaki, Masahito Network and Seiberg duality, Journal of High Energy Physics, Volume 2012 (2012) no. 9 | DOI:10.1007/jhep09(2012)036
  • Галахов, Д В; Galakhov, D V; Галахов, Д В; Galakhov, D V; Миронов, Андрей Дмитриевич; Mironov, Andrei Dmitrievich; Миронов, Андрей Дмитриевич; Mironov, Andrei Dmitrievich; Морозов, Алексей Юрьевич; Morozov, Aleksei Yur'evich; Смирнов, Андрей Валерьевич; Smirnov, Andrei Valer'evich О трехмерном обобщении соответствия Алдая - Гайотто - Тачикавы, Теоретическая и математическая физика, Volume 172 (2012) no. 1, p. 73 | DOI:10.4213/tmf6930
  • Морозов, Алексей Юрьевич; Morozov, Aleksei Yur'evich Загадки β-деформации, Теоретическая и математическая физика, Volume 173 (2012) no. 1, p. 104 | DOI:10.4213/tmf6967
  • Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Positivity for cluster algebras from surfaces, Advances in Mathematics, Volume 227 (2011) no. 6, p. 2241 | DOI:10.1016/j.aim.2011.04.018
  • Terashima, Yuji; Yamazaki, Masahito SL(2,R) Chern-Simons, Liouville, and gauge theory on duality walls, Journal of High Energy Physics, Volume 2011 (2011) no. 8 | DOI:10.1007/jhep08(2011)135
  • Nekrasov, N.; Rosly, A.; Shatashvili, S. Darboux coordinates, Yang-Yang functional, and gauge theory, Nuclear Physics B - Proceedings Supplements, Volume 216 (2011) no. 1, p. 69 | DOI:10.1016/j.nuclphysbps.2011.04.150
  • Kenyon, Richard Spanning forests and the vector bundle Laplacian, The Annals of Probability, Volume 39 (2011) no. 5 | DOI:10.1214/10-aop596
  • Henriques, Andre; Speyer, David E. The multidimensional cube recurrence, Advances in Mathematics, Volume 223 (2010) no. 3, p. 1107 | DOI:10.1016/j.aim.2009.09.004
  • Schiffler, Ralf On cluster algebras arising from unpunctured surfaces II, Advances in Mathematics, Volume 223 (2010) no. 6, p. 1885 | DOI:10.1016/j.aim.2009.10.015
  • Burger, Marc; Iozzi, Alessandra; Wienhard, Anna Surface group representations with maximal Toledo invariant, Annals of Mathematics, Volume 172 (2010) no. 1, p. 517 | DOI:10.4007/annals.2010.172.517
  • Labourie, François An algebra of observables for cross ratios, Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, p. 503 | DOI:10.1016/j.crma.2010.03.012
  • Lampe, P. A Quantum Cluster Algebra of Kronecker Type and the Dual Canonical Basis, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq162
  • Musiker, Gregg; Schiffler, Ralf Cluster expansion formulas and perfect matchings, Journal of Algebraic Combinatorics, Volume 32 (2010) no. 2, p. 187 | DOI:10.1007/s10801-009-0210-3
  • Drukker, Nadav; Gomis, Jaume; Okuda, Takuya; Teschner, Jörg Gauge theory loop operators and Liouville theory, Journal of High Energy Physics, Volume 2010 (2010) no. 2 | DOI:10.1007/jhep02(2010)057
  • Hatsuda, Yasuyuki; Ito, Katsushi; Sakai, Kazuhiro; Satoh, Yuji Thermodynamic Bethe ansatz equations for minimal surfaces in AdS 3, Journal of High Energy Physics, Volume 2010 (2010) no. 4 | DOI:10.1007/jhep04(2010)108
  • Funar, Louis; Sergiescu, Vlad Central extensions of the Ptolemy-Thompson group and quantized Teichmüller theory, Journal of Topology, Volume 3 (2010) no. 1, p. 29 | DOI:10.1112/jtopol/jtp033
  • Danilov, Vladimir I; Karzanov, Aleksander V; Koshevoy, Gleb A Separated set-systems and their geometric models, Russian Mathematical Surveys, Volume 65 (2010) no. 4, p. 659 | DOI:10.1070/rm2010v065n04abeh004692
  • Данилов, Владимир Иванович; Danilov, Vladimir Ivanovich; Карзанов, Александр Викторович; Karzanov, Aleksander Viktorovich; Кошевой, Глеб Алексеевич; Koshevoy, Gleb Alekseevich Системы разделенных множеств и их геометрические модели, Успехи математических наук, Volume 65 (2010) no. 4, p. 67 | DOI:10.4213/rm9364
  • Fock, V. V.; Goncharov, A. B. Cluster Ensembles, Quantization and the Dilogarithm II: The Intertwiner, Algebra, Arithmetic, and Geometry, Volume 269 (2009), p. 655 | DOI:10.1007/978-0-8176-4745-2_15
  • Guichard, Olivier; Wienhard, Anna Domains of discontinuity for surface groups, Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, p. 1057 | DOI:10.1016/j.crma.2009.06.013
  • Labourie, François; McShane, Gregory Cross ratios and identities for higher Teichmüller-Thurston theory, Duke Mathematical Journal, Volume 149 (2009) no. 2 | DOI:10.1215/00127094-2009-040
  • Schiffler, R.; Thomas, H. On Cluster Algebras Arising from Unpunctured Surfaces, International Mathematics Research Notices (2009) | DOI:10.1093/imrn/rnp047
  • Fock, V.V.; Goncharov, A.B. The quantum dilogarithm and representations of quantum cluster varieties, Inventiones mathematicae, Volume 175 (2009) no. 2, p. 223 | DOI:10.1007/s00222-008-0149-3
  • Kontsevich, Maxim Holonomic -modules and positive characteristic, Japanese Journal of Mathematics, Volume 4 (2009) no. 1, p. 1 | DOI:10.1007/s11537-009-0852-x
  • McMullen, Curtis T. Ribbon ℝ-trees and holomorphic dynamics on the unit disk, Journal of Topology, Volume 2 (2009) no. 1, p. 23 | DOI:10.1112/jtopol/jtn032
  • Teschner, Jörg Nonrational Conformal Field Theory, New Trends in Mathematical Physics (2009), p. 697 | DOI:10.1007/978-90-481-2810-5_46
  • Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Mathematica, Volume 201 (2008) no. 1, p. 83 | DOI:10.1007/s11511-008-0030-7
  • Guichard, Olivier; Wienhard, Anna Convex foliated projective structures and the Hitchin component for PSL4(R), Duke Mathematical Journal, Volume 144 (2008) no. 3 | DOI:10.1215/00127094-2008-040
  • Bonahon, Francis; Liu, Xiaobo Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms, Geometry Topology, Volume 11 (2007) no. 2, p. 889 | DOI:10.2140/gt.2007.11.889
  • Baur, Karin; Marsh, Bethany Rose A Geometric Description of them-cluster Categories of TypeDn, International Mathematics Research Notices, Volume 2007 (2007) | DOI:10.1093/imrn/rnm011
  • Labourie, François Cross ratios, surface groups, PSL(n,ℝ) and diffeomorphisms of the circle, Publications mathématiques de l'IHÉS, Volume 106 (2007) no. 1, p. 139 | DOI:10.1007/s10240-007-0009-5

Cité par 382 documents. Sources : Crossref