Vertex algebras and the formal loop space
Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 209-269.

We construct a certain algebro-geometric version (X) of the free loop space for a complex algebraic variety X. This is an ind-scheme containing the scheme 0(X) of formal arcs in X as studied by Kontsevich and Denef-Loeser. We describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions on (X) supported in 0(X). We also show that (X) possesses a factorization structure: a certain non-linear version of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop space produce vertex algebras.

@article{PMIHES_2004__100__209_0,
     author = {Kapranov, Mikhail and Vasserot, Eric},
     title = {Vertex algebras and the formal loop space},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {209--269},
     publisher = {Springer},
     volume = {100},
     year = {2004},
     doi = {10.1007/s10240-004-0023-9},
     mrnumber = {2102701},
     zbl = {1106.17038},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-004-0023-9/}
}
TY  - JOUR
AU  - Kapranov, Mikhail
AU  - Vasserot, Eric
TI  - Vertex algebras and the formal loop space
JO  - Publications Mathématiques de l'IHÉS
PY  - 2004
SP  - 209
EP  - 269
VL  - 100
PB  - Springer
UR  - https://www.numdam.org/articles/10.1007/s10240-004-0023-9/
DO  - 10.1007/s10240-004-0023-9
LA  - en
ID  - PMIHES_2004__100__209_0
ER  - 
%0 Journal Article
%A Kapranov, Mikhail
%A Vasserot, Eric
%T Vertex algebras and the formal loop space
%J Publications Mathématiques de l'IHÉS
%D 2004
%P 209-269
%V 100
%I Springer
%U https://www.numdam.org/articles/10.1007/s10240-004-0023-9/
%R 10.1007/s10240-004-0023-9
%G en
%F PMIHES_2004__100__209_0
Kapranov, Mikhail; Vasserot, Eric. Vertex algebras and the formal loop space. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 209-269. doi : 10.1007/s10240-004-0023-9. https://www.numdam.org/articles/10.1007/s10240-004-0023-9/

1. M. Artin, B. Mazur, Etale Homotopy, Lect. Notes Math. 100, Springer, 1970. | MR | Zbl

2. B. Bakalov, Beilinson-Drinfeld's definition of a chiral algebra, available from http://www.math.berkeley.edu/∼bakalov/.

3. A. Beilinson, I. Bernstein, A proof of the Jantzen conjectures, in: S. Gelfand, S. Gindikin (eds.), I. M. Gelfand Seminar 1, 1-50, Adv. Soviet Math. 16, Amer. Math. Soc., Providence, RI, 1993. | Zbl

4. A. Beilinson, V. Drinfeld, Chiral algebras, available from http://zaphod.uchicago.edu/∼benzvi/.

5. A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, available from http://zaphod.uchicago.edu/∼benzvi/.

6. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Springer, 1990. | MR | Zbl

7. C. Contou-Carrère, Jacobienne locale, groupe de bivecteurs de Witt universel et symbole modéré, C.R. Acad. Sci. Paris, Sér. I, Math., 318 (1994), 743-746. | MR | Zbl

8. J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., 135 (1999), 201-232. | MR | Zbl

9. A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, Grund. Math. Wiss. 166, Boston, Basel, Berlin: Springer, 1971. | Zbl

10. A. Grothendieck, Éléments de géométrie algébrique IV (rédigés avec la collaboration de Jean Dieudonné), Publ. Math., Inst. Hautes Étud. Sci., 24 (1965), 5-231, 28 (1966), 5-255, 32 (1967), 5-361.

11. E. Frenkel, Vertex algebras and algebraic curves, Séminaire Bourbaki, 875 (2000), Astérisque 276 (2002), 299-339. | Numdam | MR | Zbl

12. I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math. 134, Boston: Academic Press, 1988. | MR | Zbl

13. D. Gaitsgory, Notes on 2d conformal field theory and string theory, in: P. Deligne et al. (eds), Quantum fields and strings: a course for mathematicians, vol. 2, pp. 1017-1089, Providence, RI: Am. Math. Soc., 1999. | MR

14. I. M. Gelfand, D. A. Kazhdan, D. B. Fuks, The actions of infinite-dimensional Lie algebras, Funct. Anal. Appl., 6 (1972), 9-13. | MR | Zbl

15. A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, SGA IV, Exp. I, Lect. Notes Math. 269, Springer, 1970. | MR | Zbl

16. Y.-Z. Huang, J. Lepowsky, On the 𝒟-module and the formal variable approachs to vertex algebras, Topics in geometry, pp. 175-202, Birkhäuser, 1996. | MR | Zbl

17. V. Kac, Vertex algebras for beginners, Univ. Lect. Ser. 10, Providence, RI: Am. Math. Soc., 1997. | MR | Zbl

18. M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields, J. Am. Math. Soc., 14 (2001), 239-262. | MR | Zbl

19. K. Kato, Existence theorem for higher local fields, Invitation to higher local fields (Münster, 1999), pp. 165-195 (electronic), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000. | MR | Zbl

20. M. Kashiwara, T. Tanisaki, Kazhdan-Lusztig Conjecture for Symmetrizable Kac-Moody Lie Algebra. II Intersection Cohomologies of Schubert varieties, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), pp. 159-195, Progr. Math., 92, Birkhäuser, 1990. | MR | Zbl

21. D. A. Leites, Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk., 35 (1980), 3-57. | MR | Zbl

22. A. Malikov, V. Schechtman, A. Vaintrob, Chiral De Rham complex, Comm. Math. Phys., 204 (1999), 439-473. | MR | Zbl

23. A. N. Parshin, Higher-dimensional local fields and L-functions, Invitation to higher local fields (Münster, 1999), pp. 199-213 (electronic), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000. | MR | Zbl

24. R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, in: P. Cartier et al. (eds.), Grothendieck Festschrift, vol. III, Progr. Math., 88, pp. 247-435, Birkhäuser, 1990. | MR | Zbl

  • Krylov, Vasily; Rybnikov, Leonid Bethe Subalgebras in Antidominantly Shifted Yangians, International Mathematics Research Notices, Volume 2024 (2024) no. 9, p. 7846 | DOI:10.1093/imrn/rnad327
  • Ott, Nadia Artin's theorems in supergeometry, Journal of Geometry and Physics, Volume 194 (2023), p. 105021 | DOI:10.1016/j.geomphys.2023.105021
  • Raskin, Sam Chiral principal series categories I: Finite dimensional calculations, Advances in Mathematics, Volume 388 (2021), p. 107856 | DOI:10.1016/j.aim.2021.107856
  • Sakellaridis, Yiannis; Wang, Jonathan Intersection complexes and unramified 𝐿-factors, Journal of the American Mathematical Society, Volume 35 (2021) no. 3, p. 799 | DOI:10.1090/jams/990
  • Manin, Yuri I.; Marcolli, Matilde Nori Diagrams and Persistent Homology, Mathematics in Computer Science, Volume 14 (2020) no. 1, p. 77 | DOI:10.1007/s11786-019-00422-7
  • Yanagida, Shintarou Boson-fermion correspondence from factorization spaces, Journal of Geometry and Physics, Volume 124 (2018), p. 55 | DOI:10.1016/j.geomphys.2017.10.013
  • Braunling, Oliver; Groechenig, Michael; Wolfson, Jesse The index map in algebraic K-theory, Selecta Mathematica, Volume 24 (2018) no. 2, p. 1039 | DOI:10.1007/s00029-017-0364-0
  • Beraldo, Dario Loop group actions on categories and Whittaker invariants, Advances in Mathematics, Volume 322 (2017), p. 565 | DOI:10.1016/j.aim.2017.10.024
  • Malikov, Fyodor An Introduction to Algebras of Chiral Differential Operators, Perspectives in Lie Theory, Volume 19 (2017), p. 73 | DOI:10.1007/978-3-319-58971-8_2
  • Farang-Hariri, Banafsheh GEOMETRIC TAMELY RAMIFIED LOCAL THETA CORRESPONDENCE IN THE FRAMEWORK OF THE GEOMETRIC LANGLANDS PROGRAM, Journal of the Institute of Mathematics of Jussieu, Volume 15 (2016) no. 3, p. 625 | DOI:10.1017/s1474748015000043
  • Cheung, Pokman Chiral differential operators: Formal loop group actions and associated modules, Advances in Mathematics, Volume 274 (2015), p. 323 | DOI:10.1016/j.aim.2014.12.036
  • Linshaw, Andrew; Mathai, Varghese Twisted Chiral de Rham Complex, Generalized Geometry, and T-duality, Communications in Mathematical Physics, Volume 339 (2015) no. 2, p. 663 | DOI:10.1007/s00220-015-2403-z
  • Yasuda, Takehiko The -cyclic McKay correspondence via motivic integration, Compositio Mathematica, Volume 150 (2014) no. 7, p. 1125 | DOI:10.1112/s0010437x13007781
  • Ekstrand, Joel; Heluani, Reimundo; Zabzine, Maxim Sheaves of N=2 supersymmetric vertex algebras on Poisson manifolds, Journal of Geometry and Physics, Volume 62 (2012) no. 11, p. 2259 | DOI:10.1016/j.geomphys.2012.07.003
  • Shan, Peng Graded decomposition matrices of 𝑣-Schur algebras via Jantzen filtration, Representation Theory of the American Mathematical Society, Volume 16 (2012) no. 7, p. 212 | DOI:10.1090/s1088-4165-2012-00416-2
  • Kapranov, Mikhail; Vasserot, Eric Supersymmetry and the formal loop space, Advances in Mathematics, Volume 227 (2011) no. 3, p. 1078 | DOI:10.1016/j.aim.2011.03.006
  • PREVIDI, LUIGI LOCALLY COMPACT OBJECTS IN EXACT CATEGORIES, International Journal of Mathematics, Volume 22 (2011) no. 12, p. 1787 | DOI:10.1142/s0129167x11007379
  • Li, Dan The algebraic geometry of Harper operators, Journal of Physics A: Mathematical and Theoretical, Volume 44 (2011) no. 40, p. 405204 | DOI:10.1088/1751-8113/44/40/405204
  • Ben-Zvi, David; Nevins, Thomas W -Symmetry of the Adèlic Grassmannian, Communications in Mathematical Physics, Volume 293 (2010) no. 1, p. 185 | DOI:10.1007/s00220-009-0925-y
  • Bressler, Paul; Kapranov, Mikhail; Tsygan, Boris; Vasserot, Eric Riemann–Roch for Real Varieties, Algebra, Arithmetic, and Geometry, Volume 269 (2009), p. 125 | DOI:10.1007/978-0-8176-4745-2_4
  • Kurke, Herbert; Osipov, Denis; Zheglov, Alexander Formal punctured ribbons and two-dimensional local fields, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2009 (2009) no. 629 | DOI:10.1515/crelle.2009.029
  • Nadler, David Microlocal branes are constructible sheaves, Selecta Mathematica, Volume 15 (2009) no. 4, p. 563 | DOI:10.1007/s00029-009-0008-0
  • Kapranov, M.; Vasserot, E. Formal loops III: Additive functions and the Radon transform, Advances in Mathematics, Volume 219 (2008) no. 6, p. 1852 | DOI:10.1016/j.aim.2008.07.007
  • Gorbounov, Vassily; Ochanine, Serge Mirror symmetry formulae for the elliptic genus of complete intersections, Journal of Topology, Volume 1 (2008) no. 2, p. 429 | DOI:10.1112/jtopol/jtm014
  • Heluani, Reimundo SUSY Vertex Algebras and Supercurves, Communications in Mathematical Physics, Volume 275 (2007) no. 3, p. 607 | DOI:10.1007/s00220-007-0325-0
  • Arkhipov, Sergey; Kapranov, Mikhail Toric arc schemes and quantum cohomology of toric varieties, Mathematische Annalen, Volume 335 (2006) no. 4, p. 953 | DOI:10.1007/s00208-006-0779-y
  • Drinfeld, Vladimir Infinite-Dimensional Vector Bundles in Algebraic Geometry, The Unity of Mathematics, Volume 244 (2006), p. 263 | DOI:10.1007/0-8176-4467-9_7

Cité par 27 documents. Sources : Crossref