Determinantal point processes have arisen in diverse settings in recent years and have been investigated intensively. We study basic combinatorial and probabilistic aspects in the discrete case. Our main results concern relationships with matroids, stochastic domination, negative association, completeness for infinite matroids, tail triviality, and a method for extension of results from orthogonal projections to positive contractions. We also present several new avenues for further investigation, involving Hilbert spaces, combinatorics, homology, and group representations, among other areas.
@article{PMIHES_2003__98__167_0, author = {Lyons, Russell}, title = {Determinantal probability measures}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {167--212}, publisher = {Springer}, volume = {98}, year = {2003}, doi = {10.1007/s10240-003-0016-0}, mrnumber = {2031202}, zbl = {1055.60003}, language = {en}, url = {https://www.numdam.org/articles/10.1007/s10240-003-0016-0/} }
Lyons, Russell. Determinantal probability measures. Publications Mathématiques de l'IHÉS, Tome 98 (2003), pp. 167-212. doi : 10.1007/s10240-003-0016-0. https://www.numdam.org/articles/10.1007/s10240-003-0016-0/
1. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math., 3, 450-465. | MR | Zbl
(1990),2. The Probabilistic Method. Second edition. New York: John Wiley & Sons Inc. | MR | Zbl
and (2001),3. Group-invariant percolation on graphs. Geom. Funct. Anal., 9, 29-66. | MR | Zbl
, , , and (1999),4. Uniform spanning forests. Ann. Probab., 29, 1-65. | MR | Zbl
, , , and (2001),5. Inequalities with applications to percolation and reliability. J. Appl. Probab., 22, 556-569. | MR | Zbl
, and (1985),6. On the closure of characters and the zeros of entire functions. Acta Math., 118, 79-93. | MR | Zbl
and (1967),7. Characters of symmetric groups, and correlation functions of point processes. Funkts. Anal. Prilozh., 34, 12-28, 96. English translation: Funct. Anal. Appl., 34(1), 10-23. | MR | Zbl
(2000),8. Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc., 13, 481-515 (electronic). | MR | Zbl
, , and (2000),9. Distributions on partitions, point processes, and the hypergeometric kernel. Comment. Math. Phys., 211, 335-358. | MR | Zbl
and (2000),10. z-measures on partitions, Robinson-Schensted-Knuth correspondence, and β=2 random matrix ensembles. In P. Bleher and A. Its, eds., Random Matrix Models and Their Applications, vol. 40 of Math. Sci. Res. Inst. Publ., pp. 71-94. Cambridge: Cambridge Univ. Press. | Zbl
and (2001),11. Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Preprint. | MR | Zbl
and (2002),12. Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis. Isr. J. Math., 57, 137-224. | Zbl
and (1987),13. A. Broder (1989), Generating random spanning trees. In 30th Annual Symposium on Foundations of Computer Science (Research Triangle Park, North Carolina), pp. 442-447. New York: IEEE.
14. The dissection of rectangles into squares. Duke Math. J., 7, 312-340. | MR | Zbl
, , , and (1940),15. Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab., 21, 1329-1371. | MR | Zbl
and (1993),16. cohomology and group cohomology. Topology, 25, 189-215. | MR | Zbl
and (1986), L2-17. Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. To appear. | MR | Zbl
, , , and (2003),18. The Riemann hypothesis. Notices Am. Math. Soc., 50, 341-353. | MR
(2003),19. A Course in Functional Analysis. Second edition. New York: Springer. | MR | Zbl
(1990),20. Entropie d'un groupe abélien de transformations. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25, 11-30. | Zbl
(1972/73),21. An Introduction to the Theory of Point Processes. New York: Springer. | MR | Zbl
and (1988),22. Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture. Bull. Am. Math. Soc., New Ser., 40, 155-178 (electronic). | MR
(2003),23. Balls and bins: a study in negative dependence. Random Struct. Algorithms, 13, 99-124. | MR | Zbl
and (1998),24. Statistical theory of the energy levels of complex systems. III. J. Math. Phys., 3, 166-175. | MR | Zbl
(1962),25. T. Feder and M. Mihail (1992), Balanced matroids. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 26-38, New York. Association for Computing Machinery (ACM). Held in Victoria, BC, Canada.
26. The average impedance of an electrical network. In Reissner Anniversary Volume, Contributions to Applied Mechanics, pp. 333-340. J. W. Edwards, Ann Arbor, Michigan. Edited by the Staff of the Department of Aeronautical Engineering and Applied Mechanics of the Polytechnic Institute of Brooklyn. | MR | Zbl
(1948),27. Representation Theory: A First Course. Readings in Mathematics. New York: Springer. | MR | Zbl
and (1991),28. Invariants l2 de relations d'équivalence et de groupes. Publ. Math., Inst. Hautes Étud. Sci., 95, 93-150. | Numdam | Zbl
(2002),29. Gibbs Measures and Phase Transitions. Berlin-New York: Walter de Gruyter & Co. | MR | Zbl
(1988),30. Random-cluster measures and uniform spanning trees. Stochastic Processes Appl., 59, 267-275. | MR | Zbl
(1995),31. A Hilbert Space Problem Book. Second edition. Encycl. Math. Appl. 17, New York: Springer. | MR | Zbl
(1982),32. Change intolerance in spanning forests. J. Theor. Probab., 16, 47-58. | MR | Zbl
and (2003),33. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. (2), 153, 259-296. | MR | Zbl
(2001),34. Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields, 123, 225-280. | MR | Zbl
(2002),35. Enumeration of Q-acyclic simplicial complexes. Isr. J. Math., 45, 337-351. | MR | Zbl
(1983),36. Commuting measure-preserving transformations. Isr. J. Math., 12, 161-173. | MR | Zbl
and (1972),37. G. Kirchhoff (1847), Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem., 72, 497-508.
38. A bird's-eye view of uniform spanning trees and forests. In D. Aldous and J. Propp, eds., Microsurveys in Discrete Probability, vol. 41 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 135-162. Providence, RI: Am. Math. Soc., Papers from the workshop held as part of the Dimacs Special Year on Discrete Probability in Princeton, NJ, June 2-6, 1997. | Zbl
(1998),39. Phase transitions on nonamenable graphs. J. Math. Phys., 41, 1099-1126. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. | MR | Zbl
(2000),40. R. Lyons (2003), Random complexes and ℓ2-Betti numbers. In preparation.
41. Minimal spanning forests. In preparation.
, , and (2003),42. Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination. Duke Math. J. To appear. | MR | Zbl
and (2003),43. The coincidence approach to stochastic point processes. Adv. Appl. Probab., 7, 83-122. | MR | Zbl
(1975),44. Matrix generalizations of some theorems on trees, cycles and cocycles in graphs. SIAM J. Appl. Math., 30, 143-148. | MR | Zbl
(1976),45. Random Matrices. Second edition. Boston, MA: Academic Press Inc. | MR | Zbl
(1991),46. The components of the wired spanning forest are recurrent. Probab. Theory Related Fields, 125, 259-265. | MR | Zbl
(2003),47. C. M. Newman (1984), Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y. L. Tong, ed., Inequalities in Statistics and Probability, pp. 127-140. Hayward, CA: Inst. Math. Statist. Proceedings of the symposium held at the University of Nebraska, Lincoln, Neb., October 27-30, 1982. | MR
48. Infinite wedge and random partitions. Sel. Math., New Ser., 7, 57-81. | MR | Zbl
(2001),49. Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc., 16, 581-603 (electronic). | MR | Zbl
and (2003),50. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math., 48, 1-141. | MR | Zbl
and (1987),51. Matroid Theory. New York: Oxford University Press. | MR | Zbl
(1992),52. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab., 19, 1559-1574. | MR | Zbl
(1991),53. Towards a theory of negative dependence. J. Math. Phys., 41, 1371-1390. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. | MR | Zbl
(2000),54. How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms, 27, 170-217. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996). | MR | Zbl
and (1998),55. Two consequences of the Beurling-Malliavin theory. Proc. Am. Math. Soc., 36, 116-122. | MR | Zbl
(1972),56. Completeness of sets of complex exponentials. Adv. Math., 24, 1-62. | MR | Zbl
(1977),57. The Beurling-Malliavin density of a random sequence. Proc. Am. Math. Soc., 125, 1745-1749. | MR | Zbl
and (1997),58. A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab., 13, 343-356. | MR | Zbl
(2000),59. The law of the iterated logarithm for negatively associated random variables. Stochastic Processes Appl., 83, 139-148. | MR | Zbl
and (1999),60. Fermion process and Fredholm determinant. In H. G. W. Begehr, R. P. Gilbert, and J. Kajiwara, eds., Proceedings of the Second ISAAC Congress, vol. 1, pp. 15-23. Kluwer Academic Publ. International Society for Analysis, Applications and Computation, vol. 7. | MR | Zbl
and (2000),61. Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. Preprint. | MR | Zbl
and (2002),62. Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties. Ann. Probab., 31, 1533-1564. | MR | Zbl
and (2003),63. Glauber dynamics for fermion point processes. Nagoya Math. J., 168, 139-166. | MR | Zbl
and (2002),64. Determinantal random point fields. Usp. Mat. Nauk, 55, 107-160. | MR | Zbl
(2000a),65. Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Stat. Phys., 100, 491-522. | MR | Zbl
(2000b),66. The existence of probability measures with given marginals. Ann. Math. Stat., 36, 423-439. | MR | Zbl
(1965),67. Resistances and currents in infinite electrical networks. J. Combin. Theory, Ser. B, 49, 87-102. | MR | Zbl
(1990),68. Convergence en moyenne de l'information pour l'action de Z2. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 24, 135-137. | Zbl
(1972),69. Asymptotic theory of the characters of a symmetric group. Funkts. Anal. i Prilozh., 15, 15-27, 96. English translation: Funct. Anal. Appl., 15(4), 246-255 (1982). | MR | Zbl
and (1981),70. Matroid Theory. London: Academic Press [Harcourt Brace Jovanovich Publishers]. L. M. S. Monographs, No. 8. | MR | Zbl
(1976),71. Combinatorial Geometries. Cambridge: Cambridge University Press. | MR | Zbl
, ed. (1987),72. On the abstract properties of linear dependence. Am. J. Math., 57, 509-533. | MR | Zbl
(1935),73. Geometric Integration Theory. Princeton, N.J.: Princeton University Press. | MR | Zbl
(1957),74. Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, pp. 296-303. New York: ACM. Held in Philadelphia, PA, May 22-24, 1996. | MR | Zbl
(1996),75. Strassen's law of the iterated logarithm for negatively associated random vectors. Stochastic Processes Appl., 95, 311-328. | Zbl
(2001),76. A weak convergence for negatively associated fields. Stat. Probab. Lett., 53, 259-267. | MR | Zbl
and (2001),- Bounds on the Mod 2 Homology of Random 2-Dimensional Determinantal Hypertrees, Combinatorica, Volume 45 (2025) no. 2 | DOI:10.1007/s00493-025-00142-6
- Cohen–Lenstra Distribution for Sparse Matrices with Determinantal Biasing, International Mathematics Research Notices, Volume 2025 (2025) no. 3 | DOI:10.1093/imrn/rnae292
- The Cosine–Sine Decomposition and Conditional Negative Correlation Inequalities for Determinantal Processes, Journal of Theoretical Probability, Volume 38 (2025) no. 1 | DOI:10.1007/s10959-024-01393-7
- GICAR Algebras and Dynamics on Determinantal Point Processes: Discrete Orthogonal Polynomial Ensemble Case, Communications in Mathematical Physics, Volume 405 (2024) no. 5 | DOI:10.1007/s00220-024-04996-7
- Simplex links in determinantal hypertrees, Journal of Applied and Computational Topology, Volume 8 (2024) no. 2, p. 401 | DOI:10.1007/s41468-023-00158-1
- Torsion-weighted spanning acycle entropy in cubical lattices and Mahler measures, Journal of Applied and Computational Topology, Volume 8 (2024) no. 6, p. 1575 | DOI:10.1007/s41468-024-00163-y
- On sampling determinantal and Pfaffian point processes on a quantum computer, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 5, p. 055202 | DOI:10.1088/1751-8121/ad1b75
- Stochastic differential equations for infinite particle systems of jump type with long range interactions, Journal of the Mathematical Society of Japan, Volume 76 (2024) no. 1 | DOI:10.2969/jmsj/90289028
- On the ergodicity of interacting particle systems under number rigidity, Probability Theory and Related Fields, Volume 188 (2024) no. 1-2, p. 583 | DOI:10.1007/s00440-023-01243-3
- Coboundary expansion for the union of determinantal hypertrees, Random Structures Algorithms, Volume 65 (2024) no. 4, p. 896 | DOI:10.1002/rsa.21250
- Fock Spaces, Fermi Fields, and Applications, Random Walks and Physical Fields, Volume 106 (2024), p. 99 | DOI:10.1007/978-3-031-57923-3_9
- A Palm hierarchy for determinantal point processes with the confluent hypergeometric kernel, which resolves the problem of harmonic analysis on the infinite-dimensional unitary group, St. Petersburg Mathematical Journal, Volume 35 (2024) no. 5, p. 769 | DOI:10.1090/spmj/1827
- Determinantal point processes conditioned on randomly incomplete configurations, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 59 (2023) no. 4 | DOI:10.1214/22-aihp1311
- New Hilbert Space Tools for Analysis of Graph Laplacians and Markov Processes, Complex Analysis and Operator Theory, Volume 17 (2023) no. 7 | DOI:10.1007/s11785-023-01412-1
- A note related to the CS decomposition and the BK inequality for discrete determinantal processes, Journal of Applied Probability, Volume 60 (2023) no. 1, p. 189 | DOI:10.1017/jpr.2022.41
- On the mean projection theorem for determinantal point processes, Latin American Journal of Probability and Mathematical Statistics, Volume 20 (2023) no. 1, p. 497 | DOI:10.30757/alea.v20-17
- Ergodic quasi-exchangeable stationary processes are isomorphic to Bernoulli processes, Monatshefte für Mathematik, Volume 200 (2023) no. 1, p. 93 | DOI:10.1007/s00605-022-01779-x
- Matchings on trees and the adjacency matrix: A determinantal viewpoint, Random Structures Algorithms, Volume 63 (2023) no. 3, p. 753 | DOI:10.1002/rsa.21167
- Gaussian multiplicative chaos for the sine-process, Russian Mathematical Surveys, Volume 78 (2023) no. 6, p. 1155 | DOI:10.4213/rm10156e
- Free fermion six vertex model: symmetric functions and random domino tilings, Selecta Mathematica, Volume 29 (2023) no. 3 | DOI:10.1007/s00029-023-00837-y
- Stochastic analysis of infinite particle systems—A new development in classical stochastic analysis and dynamical universality of random matrices, Sugaku Expositions, Volume 36 (2023) no. 2, p. 145 | DOI:10.1090/suga/480
- On tail triviality of negatively dependent stochastic processes, The Annals of Probability, Volume 51 (2023) no. 4 | DOI:10.1214/23-aop1626
- Гауссов мультипликативный хаос для синус-процесса, Успехи математических наук, Volume 78 (2023) no. 6(474), p. 179 | DOI:10.4213/rm10156
- Topology and Geometry of Random 2-Dimensional Hypertrees, Discrete Computational Geometry, Volume 67 (2022) no. 4, p. 1229 | DOI:10.1007/s00454-021-00352-x
- Discrete curvature on graphs from the effective resistance*, Journal of Physics: Complexity, Volume 3 (2022) no. 2, p. 025008 | DOI:10.1088/2632-072x/ac730d
- Determinantal Point Processes Implicitly Regularize Semiparametric Regression Problems, SIAM Journal on Mathematics of Data Science, Volume 4 (2022) no. 3, p. 1171 | DOI:10.1137/21m1403977
- Stationary determinantal processes: ψ-mixing property and correlation dimensions, Stochastic Processes and their Applications, Volume 151 (2022), p. 1 | DOI:10.1016/j.spa.2022.05.009
- Percolation of Repulsive Particles on Graphs, Séminaire de Probabilités LI, Volume 2301 (2022), p. 381 | DOI:10.1007/978-3-030-96409-2_12
- Batch Bayesian optimization via adaptive local search, Applied Intelligence, Volume 51 (2021) no. 3, p. 1280 | DOI:10.1007/s10489-020-01790-5
- Rigidity Hierarchy in Random Point Fields: Random Polynomials and Determinantal Processes, Communications in Mathematical Physics, Volume 388 (2021) no. 3, p. 1205 | DOI:10.1007/s00220-021-04254-0
- Isomorphisms between determinantal point processes with translation-invariant kernels and Poisson point processes, Ergodic Theory and Dynamical Systems, Volume 41 (2021) no. 12, p. 3807 | DOI:10.1017/etds.2020.123
- The Elliptic Tail Kernel, International Mathematics Research Notices, Volume 2021 (2021) no. 19, p. 14922 | DOI:10.1093/imrn/rnaa038
- Circulant L-ensembles in the thermodynamic limit, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 44, p. 444003 | DOI:10.1088/1751-8121/ac27e4
- Stationary Determinantal Processes on
with N Labeled Objects per Site, Part I: Basic Properties and Full Domination, Journal of Theoretical Probability, Volume 34 (2021) no. 3, p. 1321 | DOI:10.1007/s10959-020-01062-5 - Anchored expansion of Delaunay complexes in real hyperbolic space and stationary point processes, Probability Theory and Related Fields, Volume 181 (2021) no. 1-3, p. 197 | DOI:10.1007/s00440-021-01076-y
- Stochastic geometry and dynamics of infinitely many particle systems—random matrices and interacting Brownian motions in infinite dimensions, Sugaku Expositions, Volume 34 (2021) no. 2, p. 141 | DOI:10.1090/suga/461
- Determinantal Point Processes and Fermion Quasifree States, Communications in Mathematical Physics, Volume 378 (2020) no. 1, p. 507 | DOI:10.1007/s00220-020-03716-1
- The distribution of overlaps between eigenvectors of Ginibre matrices, Probability Theory and Related Fields, Volume 177 (2020) no. 1-2, p. 397 | DOI:10.1007/s00440-019-00953-x
- Infinite-dimensional stochastic differential equations and tail
-fields, Probability Theory and Related Fields, Volume 177 (2020) no. 3-4, p. 1137 | DOI:10.1007/s00440-020-00981-y - Monte Carlo with determinantal point processes, The Annals of Applied Probability, Volume 30 (2020) no. 1 | DOI:10.1214/19-aap1504
- Limiting entropy of determinantal processes, The Annals of Probability, Volume 48 (2020) no. 5 | DOI:10.1214/20-aop1435
- Rigid stationary determinantal processes in non-Archimedean fields, Bernoulli, Volume 25 (2019) no. 1 | DOI:10.3150/17-bej953
- Canonical measures on metric graphs and a Kazhdan’s theorem, Inventiones mathematicae, Volume 215 (2019) no. 3, p. 819 | DOI:10.1007/s00222-018-0838-5
- On negative association of some finite point processes on general state spaces, Journal of Applied Probability, Volume 56 (2019) no. 01, p. 139 | DOI:10.1017/jpr.2019.10
- Janossy densities for chiral random matrix ensembles and their applications to two-color QCD, Journal of High Energy Physics, Volume 2019 (2019) no. 8 | DOI:10.1007/jhep08(2019)053
- Determinantal sampling designs, Journal of Statistical Planning and Inference, Volume 199 (2019), p. 60 | DOI:10.1016/j.jspi.2018.05.005
- Determinantal spanning forests on planar graphs, The Annals of Probability, Volume 47 (2019) no. 2 | DOI:10.1214/18-aop1276
- , 2018 IEEE Statistical Signal Processing Workshop (SSP) (2018), p. 468 | DOI:10.1109/ssp.2018.8450783
- Infinite-Dimensional Measure Spaces and Frame Analysis, Acta Applicandae Mathematicae, Volume 155 (2018) no. 1, p. 41 | DOI:10.1007/s10440-017-0144-z
- Polynomial Ensembles and Recurrence Coefficients, Constructive Approximation, Volume 48 (2018) no. 1, p. 137 | DOI:10.1007/s00365-017-9413-3
- A note on tail triviality for determinantal point processes, Electronic Communications in Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ecp175
- Linear rigidity of stationary stochastic processes, Ergodic Theory and Dynamical Systems, Volume 38 (2018) no. 7, p. 2493 | DOI:10.1017/etds.2016.140
- A Functional Limit Theorem for the Sine-Process, International Mathematics Research Notices (2018) | DOI:10.1093/imrn/rny104
- Discrete Approximations of Determinantal Point Processes on Continuous Spaces: Tree Representations and Tail Triviality, Journal of Statistical Physics, Volume 170 (2018) no. 2, p. 421 | DOI:10.1007/s10955-017-1928-2
- Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs, Journal of Statistical Physics, Volume 173 (2018) no. 3-4, p. 941 | DOI:10.1007/s10955-018-2026-9
- Some properties of stationary determinantal point processes on Z, Journal of the London Mathematical Society, Volume 98 (2018) no. 3, p. 517 | DOI:10.1112/jlms.12145
- J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence, Mathematische Annalen, Volume 371 (2018) no. 1-2, p. 127 | DOI:10.1007/s00208-017-1627-y
- Data-Adaptive Estimation in Cluster Randomized Trials, Targeted Learning in Data Science (2018), p. 195 | DOI:10.1007/978-3-319-65304-4_13
- Research Questions in Data Science, Targeted Learning in Data Science (2018), p. 3 | DOI:10.1007/978-3-319-65304-4_1
- Targeted Learning Using Adaptive Survey Sampling, Targeted Learning in Data Science (2018), p. 541 | DOI:10.1007/978-3-319-65304-4_29
- Quasi-symmetries of determinantal point processes, The Annals of Probability, Volume 46 (2018) no. 2 | DOI:10.1214/17-aop1198
- On global fluctuations for non-colliding processes, The Annals of Probability, Volume 46 (2018) no. 3 | DOI:10.1214/17-aop1185
- Determinantal Point Processes Associated with Hilbert Spaces of Holomorphic Functions, Communications in Mathematical Physics, Volume 351 (2017) no. 1, p. 1 | DOI:10.1007/s00220-017-2840-y
- Estimation of the density of a determinantal process, Confluentes Mathematici, Volume 5 (2017) no. 1, p. 3 | DOI:10.5802/cml.1
- Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues, Duke Mathematical Journal, Volume 166 (2017) no. 10 | DOI:10.1215/00127094-2017-0002
- Quasi-symmetries and rigidity for determinantal point processes associated with de Branges spaces, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 93 (2017) no. 1 | DOI:10.3792/pjaa.93.1
- A palm hierarchy for determinantal point processes with the Bessel kernel, Proceedings of the Steklov Institute of Mathematics, Volume 297 (2017) no. 1, p. 90 | DOI:10.1134/s0081543817040058
- Rigidity of determinantal point processes with the Airy, the Bessel and the Gamma kernel, Bulletin of Mathematical Sciences, Volume 6 (2016) no. 1, p. 163 | DOI:10.1007/s13373-015-0080-z
- Universality of Mesoscopic Fluctuations for Orthogonal Polynomial Ensembles, Communications in Mathematical Physics, Volume 342 (2016) no. 2, p. 491 | DOI:10.1007/s00220-015-2514-6
- Invariant coupling of determinantal measures on sofic groups, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 2, p. 574 | DOI:10.1017/etds.2014.70
- A formula for simplicial tree-numbers of matroid complexes, European Journal of Combinatorics, Volume 53 (2016), p. 59 | DOI:10.1016/j.ejc.2015.11.001
- Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. II. Convergence of infinite determinantal measures, Izvestiya: Mathematics, Volume 80 (2016) no. 2, p. 299 | DOI:10.1070/im8384
- Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients, Journal of the American Mathematical Society, Volume 30 (2016) no. 1, p. 27 | DOI:10.1090/jams/854
- , Proceedings of the forty-eighth annual ACM symposium on Theory of Computing (2016), p. 192 | DOI:10.1145/2897518.2897649
- Continuum percolation for Gaussian zeroes and Ginibre eigenvalues, The Annals of Probability, Volume 44 (2016) no. 5 | DOI:10.1214/15-aop1051
- Бесконечные детерминантные меры и эргодическое разложение бесконечных мер Пикрелла. II. Сходимость бесконечных детерминантных мер, Известия Российской академии наук. Серия математическая, Volume 80 (2016) no. 2, p. 16 | DOI:10.4213/im8384
- Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions, Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, p. 551 | DOI:10.1016/j.crma.2015.03.018
- Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures, Izvestiya: Mathematics, Volume 79 (2015) no. 6, p. 1111 | DOI:10.1070/im2015v079n06abeh002775
- Determinantal processes and completeness of random exponentials: the critical case, Probability Theory and Related Fields, Volume 163 (2015) no. 3-4, p. 643 | DOI:10.1007/s00440-014-0601-9
- Бесконечные детерминантные меры и эргодическое разложение бесконечных мер Пикрелла. I. Построение бесконечных детерминантных мер, Известия Российской академии наук. Серия математическая, Volume 79 (2015) no. 6, p. 18 | DOI:10.4213/im8383
- On Comparison of Clustering Properties of Point Processes, Advances in Applied Probability, Volume 46 (2014) no. 1, p. 1 | DOI:10.1239/aap/1396360100
- The Nevai condition and a local law of large numbers for orthogonal polynomial ensembles, Advances in Mathematics, Volume 265 (2014), p. 441 | DOI:10.1016/j.aim.2014.07.026
- Concentration of Lipschitz Functionals of Determinantal and Other Strong Rayleigh Measures, Combinatorics, Probability and Computing, Volume 23 (2014) no. 1, p. 140 | DOI:10.1017/s0963548313000345
- Painlevé Kernels in Hermitian Matrix Models, Constructive Approximation, Volume 39 (2014) no. 1, p. 173 | DOI:10.1007/s00365-013-9201-7
- Skew partial fields, multilinear representations of matroids, and a matrix tree theorem, Advances in Applied Mathematics, Volume 50 (2013) no. 1, p. 201 | DOI:10.1016/j.aam.2011.08.003
- Renormalized Energy Concentration in Random Matrices, Communications in Mathematical Physics, Volume 320 (2013) no. 1, p. 199 | DOI:10.1007/s00220-013-1716-z
- Gaussian Free Field in an Interlacing Particle System with Two Jump Rates, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 4, p. 600 | DOI:10.1002/cpa.21419
- A critical phenomenon in the two-matrix model in the quartic/quadratic case, Duke Mathematical Journal, Volume 162 (2013) no. 8 | DOI:10.1215/00127094-2208757
- Perturbation analysis of the van den Berg Kesten inequality for determinantal probability measures, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2339
- Infinite determinantal measures, Electronic Research Announcements in Mathematical Sciences, Volume 20 (2013) no. 0, p. 12 | DOI:10.3934/era.2013.20.12
- The asymptotic distribution of a single eigenvalue gap of a Wigner matrix, Probability Theory and Related Fields, Volume 157 (2013) no. 1-2, p. 81 | DOI:10.1007/s00440-012-0450-3
- THE GAP PROBABILITIES OF THE TACNODE, PEARCEY AND AIRY POINT PROCESSES, THEIR MUTUAL RELATIONSHIP AND EVALUATION, Random Matrices: Theory and Applications, Volume 02 (2013) no. 02, p. 1350003 | DOI:10.1142/s2010326313500032
- Nonintersecting random walks in the neighborhood of a symmetric tacnode, The Annals of Probability, Volume 41 (2013) no. 4 | DOI:10.1214/11-aop726
- Extreme gaps between eigenvalues of random matrices, The Annals of Probability, Volume 41 (2013) no. 4 | DOI:10.1214/11-aop710
- Nonintersecting paths with a staircase initial condition, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-1902
- Non-colliding Brownian bridges and the asymmetric tacnode process, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-1811
- Stochastic order for alpha-permanental point processes, Stochastic Processes and their Applications, Volume 122 (2012) no. 3, p. 952 | DOI:10.1016/j.spa.2011.11.006
- Limits of determinantal processes near a tacnode, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 47 (2011) no. 1 | DOI:10.1214/10-aihp373
- Correlation Inequalities for Edge-Reinforced Random Walk, Electronic Communications in Probability, Volume 16 (2011) no. none | DOI:10.1214/ecp.v16-1683
- Recursive equations for the predictive distributions of some determinantal processes, Statistics Probability Letters, Volume 81 (2011) no. 1, p. 8 | DOI:10.1016/j.spl.2010.09.012
- , 2010 IEEE 51st Annual Symposium on Foundations of Computer Science (2010), p. 329 | DOI:10.1109/focs.2010.38
- A limit theorem for particle current in the symmetric exclusion process, Electronic Communications in Probability, Volume 15 (2010) no. none | DOI:10.1214/ecp.v15-1550
- The Palm measure and the Voronoi tessellation for the Ginibre process, The Annals of Applied Probability, Volume 20 (2010) no. 1 | DOI:10.1214/09-aap620
- Airy processes with wanderers and new universality classes, The Annals of Probability, Volume 38 (2010) no. 2 | DOI:10.1214/09-aop493
- Glauber and Kawasaki Dynamics for Determinantal Point Processes in Discrete Spaces, Interdisciplinary Information Sciences, Volume 15 (2009) no. 3, p. 377 | DOI:10.4036/iis.2009.377
- RANDOM COMPLEXES AND ℓ2-BETTI NUMBERS, Journal of Topology and Analysis, Volume 01 (2009) no. 02, p. 153 | DOI:10.1142/s1793525309000072
- Hyperdeterminantal point processes, Metrika, Volume 69 (2009) no. 2-3, p. 85 | DOI:10.1007/s00184-008-0209-0
- Loop-free Markov chains as determinantal point processes, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 44 (2008) no. 1 | DOI:10.1214/07-aihp115
- Large time asymptotics of growth models on space-like paths I: PushASEP, Electronic Journal of Probability, Volume 13 (2008) no. none | DOI:10.1214/ejp.v13-541
- Negative dependence and the geometry of polynomials, Journal of the American Mathematical Society, Volume 22 (2008) no. 2, p. 521 | DOI:10.1090/s0894-0347-08-00618-8
- Affine Systems: Asymptotics at Infinity for Fractal Measures, Acta Applicandae Mathematicae, Volume 98 (2007) no. 3, p. 181 | DOI:10.1007/s10440-007-9156-4
- Complex Determinantal Processes and
Noise, Electronic Journal of Probability, Volume 12 (2007) no. none | DOI:10.1214/ejp.v12-446 - Asymptotics of Plancherel-type random partitions, Journal of Algebra, Volume 313 (2007) no. 1, p. 40 | DOI:10.1016/j.jalgebra.2006.10.039
- A Variational Principle in the Dual Pair of Reproducing Kernel Hilbert Spaces and an Application, Journal of Statistical Physics, Volume 126 (2007) no. 2, p. 325 | DOI:10.1007/s10955-006-9258-9
- Fluctuation Properties of the TASEP with Periodic Initial Configuration, Journal of Statistical Physics, Volume 129 (2007) no. 5-6, p. 1055 | DOI:10.1007/s10955-007-9383-0
- Determinantal Random Fields, Encyclopedia of Mathematical Physics (2006), p. 47 | DOI:10.1016/b0-12-512666-2/00431-4
- Lower entropy bounds and particle number fluctuations in a Fermi sea, Journal of Physics A: Mathematical and General, Volume 39 (2006) no. 4, p. L85 | DOI:10.1088/0305-4470/39/4/l02
- Gibbsianness of fermion random point fields, Mathematische Zeitschrift, Volume 252 (2006) no. 1, p. 27 | DOI:10.1007/s00209-005-0843-4
- Dirichlet forms and diffusion processes for fermion random point fields, Journal of Functional Analysis, Volume 219 (2005) no. 1, p. 143 | DOI:10.1016/j.jfa.2004.03.006
- Conditional Intensity and Gibbsianness of Determinantal Point Processes, Journal of Statistical Physics, Volume 118 (2005) no. 1-2, p. 55 | DOI:10.1007/s10955-004-8777-5
- One-dependent trigonometric determinantal processes are two-block-factors, The Annals of Probability, Volume 33 (2005) no. 2 | DOI:10.1214/009117904000000595
- Janossy Densities of Coupled Random Matrices, Communications in Mathematical Physics, Volume 251 (2004) no. 3, p. 447 | DOI:10.1007/s00220-004-1177-5
- Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination, Duke Mathematical Journal, Volume 120 (2003) no. 3 | DOI:10.1215/s0012-7094-03-12032-3
Cité par 123 documents. Sources : Crossref