On subdifferential calculus and duality in non-convex optimization
Analyse non convexe (Pau, 1977), Mémoires de la Société Mathématique de France, no. 60 (1979), pp. 177-183.
@incollection{MSMF_1979__60__177_0,
     author = {Toland, John F.},
     title = {On subdifferential calculus and duality in non-convex optimization},
     booktitle = {Analyse non convexe (Pau, 1977)},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     pages = {177--183},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {60},
     year = {1979},
     doi = {10.24033/msmf.269},
     mrnumber = {81m:49013},
     zbl = {0417.90088},
     url = {https://www.numdam.org/articles/10.24033/msmf.269/}
}
TY  - CHAP
AU  - Toland, John F.
TI  - On subdifferential calculus and duality in non-convex optimization
BT  - Analyse non convexe (Pau, 1977)
AU  - Collectif
T3  - Mémoires de la Société Mathématique de France
PY  - 1979
SP  - 177
EP  - 183
IS  - 60
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/msmf.269/
DO  - 10.24033/msmf.269
ID  - MSMF_1979__60__177_0
ER  - 
%0 Book Section
%A Toland, John F.
%T On subdifferential calculus and duality in non-convex optimization
%B Analyse non convexe (Pau, 1977)
%A Collectif
%S Mémoires de la Société Mathématique de France
%D 1979
%P 177-183
%N 60
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/msmf.269/
%R 10.24033/msmf.269
%F MSMF_1979__60__177_0
Toland, John F. On subdifferential calculus and duality in non-convex optimization, dans Analyse non convexe (Pau, 1977), Mémoires de la Société Mathématique de France, no. 60 (1979), pp. 177-183. doi : 10.24033/msmf.269. https://www.numdam.org/articles/10.24033/msmf.269/

[1] Toland J.F.: A duality principle for non-convex optimisation and the calculus of variations. F.M.R.I. (University of Essex) report N° 77 to appear Arch. Rational Mech. Analysis. | Zbl

[2] Toland J.F.: Duality in non-convex optimisation. F.M.R.I. (University of Essex) report N° 78 to appear Jour. Math. Anal. Appl. | Zbl

[3] Toland J.F.: On the stability of rotating heavy chains. F.M.R.I. (University of Essex) report N° 82 (May 1977).

  • Bagirov, A. M.; Hoseini Monjezi, N.; Taheri, S. An augmented subgradient method for minimizing nonsmooth DC functions, Computational Optimization and Applications, Volume 80 (2021) no. 2, p. 411 | DOI:10.1007/s10589-021-00304-4
  • Cruz Neto, J. X.; Oliveira, P. R.; Soubeyran, A.; Souza, J. C. O. A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem, Annals of Operations Research, Volume 289 (2020) no. 2, p. 313 | DOI:10.1007/s10479-018-3104-8
  • Joki, Kaisa; Bagirov, Adil M. Bundle Methods for Nonsmooth DC Optimization, Numerical Nonsmooth Optimization (2020), p. 263 | DOI:10.1007/978-3-030-34910-3_8
  • Montonen, Outi; Joki, Kaisa Multiobjective Double Bundle Method for DC Optimization, Numerical Nonsmooth Optimization (2020), p. 481 | DOI:10.1007/978-3-030-34910-3_14
  • Montonen, Outi; Joki, Kaisa Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints, Journal of Global Optimization, Volume 72 (2018) no. 3, p. 403 | DOI:10.1007/s10898-018-0651-0
  • Ahmadi, Amir Ali; Hall, Georgina DC decomposition of nonconvex polynomials with algebraic techniques, Mathematical Programming, Volume 169 (2018) no. 1, p. 69 | DOI:10.1007/s10107-017-1144-5
  • Gu, Guoyong; Jiang, Suhong; Yang, Junfeng A TVSCAD approach for image deblurring with impulsive noise, Inverse Problems, Volume 33 (2017) no. 12, p. 125008 | DOI:10.1088/1361-6420/aa9383
  • Penot, Jean-Paul Metric and Topological Tools, Calculus Without Derivatives, Volume 266 (2013), p. 1 | DOI:10.1007/978-1-4614-4538-8_1
  • Penot, Jean-Paul Elements of Differential Calculus, Calculus Without Derivatives, Volume 266 (2013), p. 117 | DOI:10.1007/978-1-4614-4538-8_2
  • Penot, Jean-Paul Elements of Convex Analysis, Calculus Without Derivatives, Volume 266 (2013), p. 187 | DOI:10.1007/978-1-4614-4538-8_3
  • Penot, Jean-Paul Elementary and Viscosity Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 263 | DOI:10.1007/978-1-4614-4538-8_4
  • Penot, Jean-Paul Circa-Subdifferentials, Clarke Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 357 | DOI:10.1007/978-1-4614-4538-8_5
  • Penot, Jean-Paul Limiting Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 407 | DOI:10.1007/978-1-4614-4538-8_6
  • Penot, Jean-Paul Graded Subdifferentials, Ioffe Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 463 | DOI:10.1007/978-1-4614-4538-8_7
  • Wang, Meihua; Xu, Fengmin; Xu, Chengxian; Liu, Wanquan A Branch‐and‐Bound Algorithm Embedded with DCA for DC Programming, Mathematical Problems in Engineering, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/364607
  • Penot, Jean-Paul The directional subdifferential of the difference of two convex functions, Journal of Global Optimization, Volume 49 (2011) no. 3, p. 505 | DOI:10.1007/s10898-010-9615-8
  • Amahroq, Tijani; Penot, Jean-Paul; Syam, Aïcha On the Subdifferentiability of the Difference of Two Functions and Local Minimization, Set-Valued Analysis, Volume 16 (2008) no. 4, p. 413 | DOI:10.1007/s11228-008-0085-9
  • An, Le Thi Hoai; Tao, Pham Dinh A new algorithm for Solving Large Scale Molecular Distance Geometry Problems, High Performance Algorithms and Software for Nonlinear Optimization, Volume 82 (2003), p. 285 | DOI:10.1007/978-1-4613-0241-4_13
  • An, Le Thi Hoai; Tao, Pham Dinh Large-Scale Molecular Optimization from Distance Matrices by a D.C. Optimization Approach, SIAM Journal on Optimization, Volume 14 (2003) no. 1, p. 77 | DOI:10.1137/s1052623498342794
  • Thi Hoai An, LE.; Ding Tao, Pham. A continuous approch for globally solving linearly constrained quadratic, Optimization, Volume 50 (2001) no. 1-2, p. 93 | DOI:10.1080/02331930108844555
  • Le, Thi Hoai An; Pham, Dinh Tao D.C. Programming Approach for Large-Scale Molecular Optimization via the General Distance Geometry Problem, Optimization in Computational Chemistry and Molecular Biology, Volume 40 (2000), p. 301 | DOI:10.1007/978-1-4757-3218-4_18
  • Tao, Pham Dinh; An, Le Thi Hoai A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem, SIAM Journal on Optimization, Volume 8 (1998) no. 2, p. 476 | DOI:10.1137/s1052623494274313
  • An, Le Thi Hoai; Tao, Pham Dinh; Muu, Le Dung Numerical solution for optimization over the efficient set by d.c. optimization algorithms, Operations Research Letters, Volume 19 (1996) no. 3, p. 117 | DOI:10.1016/0167-6377(96)00022-3
  • Martinez-Legaz, J. E. Generalized Conjugation and Related Topics, Generalized Convexity and Fractional Programming with Economic Applications, Volume 345 (1990), p. 168 | DOI:10.1007/978-3-642-46709-7_13
  • Correa, Rafaël; Hiriart‐Urruty, Jean‐Baptiste A First Order Sufficient Condition for Optimality in Nonsmooth Optimization, Mathematische Nachrichten, Volume 144 (1989) no. 1, p. 309 | DOI:10.1002/mana.19891440119
  • Volle, M. Concave duality: Application to problems dealing with difference of functions, Mathematical Programming, Volume 41 (1988) no. 1-3, p. 261 | DOI:10.1007/bf01580767
  • Tuy, H. Convex programs with an additional reverse convex constraint, Journal of Optimization Theory and Applications, Volume 52 (1987) no. 3, p. 463 | DOI:10.1007/bf00938217
  • Volle, M. Conjugaison par tranches et dualitë de toland, Optimization, Volume 18 (1987) no. 5, p. 633 | DOI:10.1080/02331938708843277
  • Ellaia, R.; Hiriart-Urruty, J.-B. The conjugate of the difference of convex functions, Journal of Optimization Theory and Applications, Volume 49 (1986) no. 3, p. 493 | DOI:10.1007/bf00941076
  • Hiriart-Urruty, J.-B. Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions, Convexity and Duality in Optimization, Volume 256 (1985), p. 37 | DOI:10.1007/978-3-642-45610-7_3

Cité par 30 documents. Sources : Crossref