Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1451-1472.

We consider a model for flow in a porous medium with a fracture in which the flow in the fracture is governed by the Darcy-Forchheimerlaw while that in the surrounding matrix is governed by Darcy's law. We give an appropriate mixed, variational formulation and show existence and uniqueness of the solution. To show existence we give an analogous formulation for the model in which the Darcy-Forchheimerlaw is the governing equation throughout the domain. We show existence and uniqueness of the solution and show that the solution for the model with Darcy's law in the matrix is the weak limit of solutions of the model with the Darcy-Forchheimerlaw in the entire domain when the Forchheimer coefficient in the matrix tends toward zero.

DOI : 10.1051/m2an/2014003
Classification : 35J60, 76S05
Mots-clés : flow in porous media, fractures, Darcy−Forchheimerflow, solvability, regularization, monotone operators
@article{M2AN_2014__48_5_1451_0,
     author = {Knabner, Peter and Roberts, Jean E.},
     title = {Mathematical analysis of a discrete fracture model coupling {Darcy} flow in the matrix with {Darcy-Forchheimer} flow in the fracture},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1451--1472},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {5},
     year = {2014},
     doi = {10.1051/m2an/2014003},
     mrnumber = {3264361},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2014003/}
}
TY  - JOUR
AU  - Knabner, Peter
AU  - Roberts, Jean E.
TI  - Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 1451
EP  - 1472
VL  - 48
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2014003/
DO  - 10.1051/m2an/2014003
LA  - en
ID  - M2AN_2014__48_5_1451_0
ER  - 
%0 Journal Article
%A Knabner, Peter
%A Roberts, Jean E.
%T Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 1451-1472
%V 48
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2014003/
%R 10.1051/m2an/2014003
%G en
%F M2AN_2014__48_5_1451_0
Knabner, Peter; Roberts, Jean E. Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1451-1472. doi : 10.1051/m2an/2014003. https://www.numdam.org/articles/10.1051/m2an/2014003/

[1] R. Adams, Sobolev Spaces, vol. 65 of Pure and Appl. Math. Academic Press, New York (1975). | MR | Zbl

[2] C. Alboin, J. Jaffré, J. Roberts and C. Serres, Domain decomposition for flow in porous media with fractures, in Proc. of the 11th Int. Conf. on Domain Decomposition Methods in Greenwich, England (1999).

[3] G. Allaire, Homogenization of the stokes flow in a connected porous medium. Asymptotic Anal. 2 (1989) 203-222. | MR | Zbl

[4] G. Allaire, One-phase newtonian flow, in Homogenization and Porous Media, vol. 6 of Interdisciplinary Appl. Math., edited by U. Hornung. Springer-Verlag, New York (1997) 45-69. | MR

[5] Y. Amirat, Ecoulements en milieu poreux n'obeissant pas a la loi de darcy. RAIRO Modél. Math. Anal. Numér. 25 (1991) 273-306. | Numdam | MR | Zbl

[6] P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239-275. | Numdam | MR | Zbl

[7] M. Balhoff, A. Mikelic and M. Wheeler, Polynomial filtration laws for low reynolds number flows through porous media. Transport in Porous Media (2009). | MR

[8] J. Bear, Dynamics of Fluids in Porous Media. American Elsevier Pub. Co., New York (1972). | Zbl

[9] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO: Modél. Math. Anal. Numér. 8 (1974) 129-151. | Numdam | MR | Zbl

[10] P. Fabrie, Regularity of the solution of Darcy−Forchheimer's equation. Nonlinear Anal., Theory Methods Appl. 13 (1989) 1025-1049. | MR | Zbl

[11] I. Faille, E. Flauraud, F. Nataf, S. Pegaz-Fiornet, F. Schneider and F. Willien, A new fault model in geological basin modelling, application to finite volume scheme and domain decomposition methods, in Finie Volumes for Complex Appl. III. Edited by R. Herbin and D. Kroner. Hermés Penton Sci. (2002) 543-550. | MR | Zbl

[12] P. Forchheimer, Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45 (1901) 1782-1788.

[13] N. Frih, J. Roberts and A. Saada, Un modèle darcy-frochheimer pour un écoulement dans un milieu poreux fracturé. ARIMA 5 (2006) 129-143.

[14] N. Frih, J. Roberts and A. Saada, Modeling fractures as interfaces: a model for forchheimer fractures. Comput. Geosci. 12 (2008) 91-104. | MR | Zbl

[15] P. Knabner and G. Summ, Solvability of the mixed formulation for Darcy−Forchheimer flow in porous media. Submitted.

[16] V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667-1691. | MR | Zbl

[17] R. Showalter and F. Morales, The narrow fracture approximation by channeled flow. J. Math. Anal. Appl. 365 (2010) 320-331. | MR | Zbl

[18] G. Summ, Lösbarkeit un Diskretisierung der gemischten Formulierung für Darcy-Frochheimer-Fluss in porösen Medien. Ph.D. thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg (2001).

[19] L. Tartar, Convergence of the homogenization process, in Non-homogeneous Media and Vibration Theory, vol. 127 of Lect. Notes Phys. Edited by E. Sancez-Palencia. Springer-Verlag (1980).

[20] E. Zeidler, Nonlinear function anaysis and its applications - Nonlinear monotone operators. Springer-Verlag, Berlin, Heidelberg, New York (1990). | Zbl

  • Wang, Huidong; Qu, Zhen; Ma, Guowei Linear and nonlinear unified fluid flow in fractured porous media considering flow pattern adaptive conversions, Computers and Geotechnics, Volume 177 (2025), p. 106856 | DOI:10.1016/j.compgeo.2024.106856
  • Sohail, Muhammad; Waseem, Farwa; Abodayeh, Kamaleldin; Rafique, Esha Analysis of entropy generation on Darcy-Forchheimer squeezed hybrid nanofluid flow between two parallel rotating disks by considering thermal radiation and viscous dissipation, Numerical Heat Transfer, Part B: Fundamentals (2025), p. 1 | DOI:10.1080/10407790.2024.2391501
  • Li, Rui; Gao, Yali; Zhang, Chen-Song; Chen, Zhangxin A Stokes–Darcy–Darcy model and its discontinuous Galerkin method on polytopic grids, Journal of Computational Physics, Volume 501 (2024), p. 112780 | DOI:10.1016/j.jcp.2024.112780
  • Leng, Haitao; Chen, Huangxin An adaptive hybridizable discontinuous Galerkin method for Darcy–Forchheimer flow in fractured porous media, Mathematical Models and Methods in Applied Sciences, Volume 34 (2024) no. 13, p. 2497 | DOI:10.1142/s0218202524500532
  • Hoang, Thi-Thao-Phuong; Yotov, Ivan A space-time mixed finite element method for reduced fracture flow models on nonmatching grids, Mathematics of Computation (2024) | DOI:10.1090/mcom/4031
  • Wu, Xinyu; Guo, Hui; Xu, Ziyao; Yang, Yang A reinterpreted discrete fracture model for Darcy–Forchheimer flow in fractured porous media, Advances in Water Resources, Volume 179 (2023), p. 104504 | DOI:10.1016/j.advwatres.2023.104504
  • Fumagalli, Alessio; Patacchini, Francesco Saverio Well-posedness and variational numerical scheme for an adaptive model in highly heterogeneous porous media, Journal of Computational Physics, Volume 475 (2023), p. 111844 | DOI:10.1016/j.jcp.2022.111844
  • Fumagalli, Alessio; Patacchini, Francesco Saverio Model adaptation for non-linear elliptic equations in mixed form: existence of solutions and numerical strategies, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 56 (2022) no. 2, p. 565 | DOI:10.1051/m2an/2022016
  • Abbas, Amir; Jeelani, Mdi Begum; Alharthi, Nadiyah Hussain Magnetohydrodynamic Effects on Third-Grade Fluid Flow and Heat Transfer with Darcy–Forchheimer Law over an Inclined Exponentially Stretching Sheet Embedded in a Porous Medium, Magnetochemistry, Volume 8 (2022) no. 6, p. 61 | DOI:10.3390/magnetochemistry8060061
  • Fumagalli, Alessio; Scotti, Anna A mathematical model for thermal single-phase flow and reactive transport in fractured porous media, Journal of Computational Physics, Volume 434 (2021), p. 110205 | DOI:10.1016/j.jcp.2021.110205
  • Park, Jun Sur Richard; Cheung, Siu Wun; Mai, Tina Multiscale simulations for multi-continuum Richards equations, Journal of Computational and Applied Mathematics, Volume 397 (2021), p. 113648 | DOI:10.1016/j.cam.2021.113648
  • Ahmed, Elyes; Fumagalli, Alessio; Budiša, Ana; Keilegavlen, Eirik; Nordbotten, Jan M.; Radu, Florin A. Robust Linear Domain Decomposition Schemes for Reduced Nonlinear Fracture Flow Models, SIAM Journal on Numerical Analysis, Volume 59 (2021) no. 1, p. 583 | DOI:10.1137/19m1268392
  • Rybak, Iryna; Metzger, Stefan A dimensionally reduced Stokes–Darcy model for fluid flow in fractured porous media, Applied Mathematics and Computation, Volume 384 (2020), p. 125260 | DOI:10.1016/j.amc.2020.125260
  • Fumagalli, Alessio; Scotti, Anna A multi-layer reduced model for flow in porous media with a fault and surrounding damage zones, Computational Geosciences, Volume 24 (2020) no. 3, p. 1347 | DOI:10.1007/s10596-020-09954-5
  • Spiridonov, Denis; Vasilyeva, Maria; Chung, Eric T. Generalized Multiscale Finite Element method for multicontinua unsaturated flow problems in fractured porous media, Journal of Computational and Applied Mathematics, Volume 370 (2020), p. 112594 | DOI:10.1016/j.cam.2019.112594
  • Liu, Wei; Cui, Jintao; Wang, Zhifeng A finite difference approximation of reduced coupled model for slightly compressible Forchheimer fractures in Karst aquifer system, Numerical Algorithms, Volume 84 (2020) no. 1, p. 133 | DOI:10.1007/s11075-019-00749-z
  • Liu, Wei; Cui, Jintao; Wang, Zhifeng Numerical analysis and modeling of multiscale Forchheimer–Forchheimer coupled model for compressible fluid flow in fractured media aquifer system, Applied Mathematics and Computation, Volume 353 (2019), p. 7 | DOI:10.1016/j.amc.2019.01.042
  • Chen, Shuangshuang; Huang, Qiumei A finite volume method for a coupled fracture model with matching and nonmatching grids, Applied Numerical Mathematics, Volume 145 (2019), p. 28 | DOI:10.1016/j.apnum.2019.05.017
  • Köppel, Markus; Martin, Vincent; Jaffré, Jérôme; Roberts, Jean E. A Lagrange multiplier method for a discrete fracture model for flow in porous media, Computational Geosciences, Volume 23 (2019) no. 2, p. 239 | DOI:10.1007/s10596-018-9779-8
  • Ahmed, Elyes; Fumagalli, Alessio; Budiša, Ana A multiscale flux basis for mortar mixed discretizations of reduced Darcy–Forchheimer fracture models, Computer Methods in Applied Mechanics and Engineering, Volume 354 (2019), p. 16 | DOI:10.1016/j.cma.2019.05.034
  • Arrarás, A.; Gaspar, F.J.; Portero, L.; Rodrigo, C. Geometric multigrid methods for Darcy–Forchheimer flow in fractured porous media, Computers Mathematics with Applications, Volume 78 (2019) no. 9, p. 3139 | DOI:10.1016/j.camwa.2019.04.031
  • Köppel, Markus; Martin, Vincent; Roberts, Jean E. A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures, GEM - International Journal on Geomathematics, Volume 10 (2019) no. 1 | DOI:10.1007/s13137-019-0117-7
  • Kou, Jisheng; Sun, Shuyu; Wu, Yuanqing A semi-analytic porosity evolution scheme for simulating wormhole propagation with the Darcy–Brinkman–Forchheimer model, Journal of Computational and Applied Mathematics, Volume 348 (2019), p. 401 | DOI:10.1016/j.cam.2018.08.055
  • Fumagalli, Alessio; Keilegavlen, Eirik; Anciaux-Sedrakian, A.; Tran, Q. H. Dual Virtual Element Methods for Discrete Fracture Matrix models, Oil Gas Science and Technology – Revue d’IFP Energies nouvelles, Volume 74 (2019), p. 41 | DOI:10.2516/ogst/2019008
  • Arrarás, Andrés; Gaspar, Francisco J.; Portero, Laura; Rodrigo, Carmen Mixed-Dimensional Geometric Multigrid Methods for Single-Phase Flow in Fractured Porous Media, SIAM Journal on Scientific Computing, Volume 41 (2019) no. 5, p. B1082 | DOI:10.1137/18m1224751
  • Chen, Shuangshuang; Rui, Hongxing A two-grid decoupled algorithm for fracture models, Computers Mathematics with Applications, Volume 76 (2018) no. 5, p. 1161 | DOI:10.1016/j.camwa.2018.06.005
  • Wang, Yuan; Niu, Yu-long; Feng, Qiang Study on the REV Size of Fractured Rock in the Non-Darcy Flow Based on the Dual-Porosity Model, Geofluids, Volume 2018 (2018), p. 1 | DOI:10.1155/2018/7535927
  • Ben Ameur, H.; Chavent, G.; Cheikh, F.; Clément, F.; Martin, V.; Roberts, J. E. First-order indicators for the estimation of discrete fractures in porous media, Inverse Problems in Science and Engineering, Volume 26 (2018) no. 1, p. 1 | DOI:10.1080/17415977.2017.1290087
  • Fumagalli, Alessio; Keilegavlen, Eirik Dual Virtual Element Method for Discrete Fractures Networks, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 1, p. B228 | DOI:10.1137/16m1098231
  • Kou, Jisheng; Sun, Shuyu; Wu, Yuanqing Mixed finite element-based fully conservative methods for simulating wormhole propagation, Computer Methods in Applied Mechanics and Engineering, Volume 298 (2016), p. 279 | DOI:10.1016/j.cma.2015.09.015

Cité par 30 documents. Sources : Crossref