Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 3, pp. 903-932.

We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap-Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.

DOI : 10.1051/m2an/2012061
Classification : 35L05, 65M12, 65M60
Mots-clés : discontinuous Galerkin, penalization coefficient, CFL condition, wave equation
@article{M2AN_2013__47_3_903_0,
     author = {Agut, Cyril and Diaz, Julien},
     title = {Stability analysis of the {Interior} {Penalty} {Discontinuous} {Galerkin} method for the wave equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {903--932},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {3},
     year = {2013},
     doi = {10.1051/m2an/2012061},
     mrnumber = {3056414},
     zbl = {1266.65151},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2012061/}
}
TY  - JOUR
AU  - Agut, Cyril
AU  - Diaz, Julien
TI  - Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 903
EP  - 932
VL  - 47
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2012061/
DO  - 10.1051/m2an/2012061
LA  - en
ID  - M2AN_2013__47_3_903_0
ER  - 
%0 Journal Article
%A Agut, Cyril
%A Diaz, Julien
%T Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 903-932
%V 47
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2012061/
%R 10.1051/m2an/2012061
%G en
%F M2AN_2013__47_3_903_0
Agut, Cyril; Diaz, Julien. Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 3, pp. 903-932. doi : 10.1051/m2an/2012061. https://www.numdam.org/articles/10.1051/m2an/2012061/

[1] C. Agut and J. Diaz, Stability analysis of the interior penalty discontinuous Galerkin method for the wave equation. INRIA Res. Report (2010).

[2] M. Ainsworth, P. Monk and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27 (2006). | MR | Zbl

[3] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR | Zbl

[4] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of disconitnuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR | Zbl

[5] C. Baldassari, Modélisation et simulation numérique pour la migration terrestre par équation d'ondes. Ph.D. Thesis (2009).

[6] G. Benitez Alvarez, A.F. Dourado Loula, E.G. Dutrado Carmo and A. Alves Rochinha, A discontinuous finite element formulation for Helmholtz equation. Comput. Methods. Appl. Mech. Engrg. 195 (2006) 4018-4035. | MR | Zbl

[7] G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2001). | MR | Zbl

[8] S. Cohen, P. Joly, J.E. Roberts and N. Tordjman, Higher-order triangular finite elements with mass-lumping for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408-2431. | Zbl

[9] S. Cohen, P. Joly and N. Tordjman, Higher-order finite elements with mass-lumping for the 1d wave equation. Finite Elem. Anal. Des. 16 (1994) 329-336. | MR | Zbl

[10] M.A. Dablain, The application of high order differencing for the scalar wave equation. Geophys. 51 (1986) 54-56.

[11] J.D. De Basabe and M.K. Sen, Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping. Geophys. J. Int. 181 (2010) 577-590.

[12] Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty galerkin methods. J. Comput. Appl. Math. 206 (2007) 843-872. | MR | Zbl

[13] S. Fauqueux, Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondes élastiques en régime transitoire. Ph.D. Thesis (2003).

[14] J.-C. Gilbert and P. Joly, Higher order time stepping for second order hyperbolic problems and optimal CFL conditions. Comput. Methods Appl. Sci. 16 (2008) 67-93. | MR | Zbl

[15] M.J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408-2431. | MR | Zbl

[16] M.J. Grote and D. Schötzau, Convergence analysis of a fully discrete dicontinuous Galerkin method for the wave equation. Preprint No. 2008-04 (2008).

[17] D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J. Int. 139 (1999) 806-822.

[18] P. Lax and B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. XIII (1960) 217-237. | MR | Zbl

[19] G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16 (1994) 37-348. | MR | Zbl

[20] K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205 (2005) 401-407. | Zbl

[21] G.R. Shubin and J.B. Bell, A modified equation approach to constructing fourth-order methods for acoustic wave propagation. SIAM J. Sci. Statist. Comput. 8 (1987) 135-151. | MR | Zbl

[22] T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2765-2773. | MR | Zbl

  • Chaumont-Frelet, Théophile Duality analysis of interior penalty discontinuous Galerkin methods under minimal regularity and application to the a priori and a posteriori error analysis of Helmholtz problems, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 58 (2024) no. 3, p. 1087 | DOI:10.1051/m2an/2024019
  • Antonietti, Paola F; Botti, Michele; Mazzieri, Ilario Discontinuous Galerkin discretization of coupled poroelasticity–elasticity problems, IMA Journal of Numerical Analysis (2024) | DOI:10.1093/imanum/drae093
  • Jaśkowiec, Jan; Sukumar, N. Penalty‐free discontinuous Galerkin method, International Journal for Numerical Methods in Engineering, Volume 125 (2024) no. 12 | DOI:10.1002/nme.7472
  • Hong, Jialin; Hou, Baohui; Sun, Liying Energy-preserving fully-discrete schemes for nonlinear stochastic wave equations with multiplicative noise, Journal of Computational Physics, Volume 451 (2022), p. 110829 | DOI:10.1016/j.jcp.2021.110829
  • Frambati, Stefano; Barucq, Hélène; Calandra, Henri; Diaz, Julien Practical unstructured splines: Algorithms, multi-patch spline spaces, and some applications to numerical analysis, Journal of Computational Physics, Volume 471 (2022), p. 111625 | DOI:10.1016/j.jcp.2022.111625
  • Antonietti, Paola F.; Botti, Michele; Mazzieri, Ilario; Poltri, Simone Nati A High-Order Discontinuous Galerkin Method for the Poro-elasto-acoustic Problem on Polygonal and Polyhedral Grids, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 1, p. B1 | DOI:10.1137/21m1410919
  • Wang, Peng; Shi, Yan; Ban, Zhen Guo; Zhu, Shi Chen; Yang, Qi; Li, Long Penalty Factor Threshold and Time Step Bound Estimations for Discontinuous Galerkin Time-Domain Method Based on Helmholtz Equation, IEEE Transactions on Antennas and Propagation, Volume 68 (2020) no. 11, p. 7494 | DOI:10.1109/tap.2020.2998585
  • Cottereau, Régis; Sevilla, Ruben Stability of an explicit high‐order spectral element method for acoustics in heterogeneous media based on local element stability criteria, International Journal for Numerical Methods in Engineering, Volume 116 (2018) no. 4, p. 223 | DOI:10.1002/nme.5922
  • Sevilla, Ruben; Cottereau, Régis Influence of periodically fluctuating material parameters on the stability of explicit high-order spectral element methods, Journal of Computational Physics, Volume 373 (2018), p. 304 | DOI:10.1016/j.jcp.2018.07.002
  • Geevers, Sjoerd; van der Vegt, J.J.W. Sharp Penalty Term and Time Step Bounds for the Interior Penalty Discontinuous Galerkin Method for Linear Hyperbolic Problems, SIAM Journal on Scientific Computing, Volume 39 (2017) no. 5, p. A1851 | DOI:10.1137/16m1091290
  • Rodríguez-Rozas, Ángel; Diaz, Julien Non-conforming curved finite element schemes for time-dependent elastic–acoustic coupled problems, Journal of Computational Physics, Volume 305 (2016), p. 44 | DOI:10.1016/j.jcp.2015.10.028
  • Ji, Xia; Sun, Jiguang; Yang, Yang Optimal penalty parameter forC0IPDG, Applied Mathematics Letters, Volume 37 (2014), p. 112 | DOI:10.1016/j.aml.2014.06.001
  • Marica, Aurora; Zuazua, Enrique Preliminaries, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 1 | DOI:10.1007/978-1-4614-5811-1_1
  • Marica, Aurora; Zuazua, Enrique Discontinuous Galerkin Approximations and Main Results, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 15 | DOI:10.1007/978-1-4614-5811-1_2
  • Marica, Aurora; Zuazua, Enrique Bibliographical Notes, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 27 | DOI:10.1007/978-1-4614-5811-1_3
  • Marica, Aurora; Zuazua, Enrique Fourier Analysis of the Discontinuous Galerkin Methods, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 31 | DOI:10.1007/978-1-4614-5811-1_4
  • Marica, Aurora; Zuazua, Enrique On the Lack of Uniform Observability for Discontinuous Galerkin Approximations of Waves, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 41 | DOI:10.1007/978-1-4614-5811-1_5
  • Marica, Aurora; Zuazua, Enrique Filtering Mechanisms, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 51 | DOI:10.1007/978-1-4614-5811-1_6
  • Marica, Aurora; Zuazua, Enrique Extensions to Other Numerical Approximation Schemes, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 83 | DOI:10.1007/978-1-4614-5811-1_7
  • Marica, Aurora; Zuazua, Enrique Comments and Open Problems, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 93 | DOI:10.1007/978-1-4614-5811-1_8

Cité par 20 documents. Sources : Crossref