We analyze two numerical schemes of Euler type in time and
Mots-clés : phase-field models, diffuse interface model, solidification process, degenerate parabolic systems, backward Euler schemes, finite elements, stability, convergence, error estimates
@article{M2AN_2009__43_3_563_0, author = {Guill\'en-Gonz\'alez, Francisco and Guti\'errez-Santacreu, Juan Vicente}, title = {Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {563--589}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/m2an/2009011}, mrnumber = {2536249}, zbl = {1171.80006}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2009011/} }
TY - JOUR AU - Guillén-González, Francisco AU - Gutiérrez-Santacreu, Juan Vicente TI - Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 563 EP - 589 VL - 43 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2009011/ DO - 10.1051/m2an/2009011 LA - en ID - M2AN_2009__43_3_563_0 ER -
%0 Journal Article %A Guillén-González, Francisco %A Gutiérrez-Santacreu, Juan Vicente %T Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 563-589 %V 43 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2009011/ %R 10.1051/m2an/2009011 %G en %F M2AN_2009__43_3_563_0
Guillén-González, Francisco; Gutiérrez-Santacreu, Juan Vicente. Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 3, pp. 563-589. doi : 10.1051/m2an/2009011. https://www.numdam.org/articles/10.1051/m2an/2009011/
[1] Weak solutions of a phase-field model for phase change of an alloy with thermal properties. Math. Methods Appl. Sci. 25 (2002) 1177-1193. | MR | Zbl
and ,[2] A semidiscretization scheme for a phase-field type model for solidification. Port. Math. (N.S.) 63 (2006) 261-292. | MR | Zbl
and ,[3] The Mathematical Theory of Finite Element Methods, Texts in Applied Mathathematics 15. Springer-Verlag, Berlin (1994). | MR | Zbl
and ,[4] Convergence of the finite element method applied to an anisotropic phase-field model. Ann. Math. Blaise Pascal 11 (2004) 67-94. | Numdam | MR | Zbl
, and ,[5] Phase-field and sharp-interface alloy models. Phys. Rev. E 48 (1993) 1897-1909. | MR
and ,[6] Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer, New York (2004). | MR | Zbl
and ,[7] Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. | MR | Zbl
and ,
[8] Unconditional stability and convergence of a fully discrete scheme for
[9] Introduction à la Théorie des Points Critiques, Mathématiques et Applications 13. Springer, Berlin (1993). | MR | Zbl
,[10] A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J. Numer. Anal. 22 (2002) 281-305. | MR | Zbl
and ,[11] Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437-445. | MR | Zbl
and ,[12] Global solutions to a degenerate solutal phase field model for the solidification of a binary alloy. Nonlinear Anal. 5 (2004) 207-217. | MR | Zbl
,
[13] Compact sets in the Space
Cité par Sources :