We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say
Mots-clés : finite element method, energy norm, a posteriori error analysis, hydro-mechanical coupling, poroelasticity
@article{M2AN_2009__43_2_353_0, author = {Ern, Alexandre and Meunier, S\'ebastien}, title = {A posteriori error analysis of {Euler-Galerkin} approximations to coupled elliptic-parabolic problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {353--375}, publisher = {EDP-Sciences}, volume = {43}, number = {2}, year = {2009}, doi = {10.1051/m2an:2008048}, mrnumber = {2512500}, zbl = {1166.76036}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2008048/} }
TY - JOUR AU - Ern, Alexandre AU - Meunier, Sébastien TI - A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 353 EP - 375 VL - 43 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2008048/ DO - 10.1051/m2an:2008048 LA - en ID - M2AN_2009__43_2_353_0 ER -
%0 Journal Article %A Ern, Alexandre %A Meunier, Sébastien %T A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 353-375 %V 43 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2008048/ %R 10.1051/m2an:2008048 %G en %F M2AN_2009__43_2_353_0
Ern, Alexandre; Meunier, Sébastien. A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 2, pp. 353-375. doi : 10.1051/m2an:2008048. https://www.numdam.org/articles/10.1051/m2an:2008048/
[1] On one approach to a posteriori error estimates for evolution problems solved by the method-of-lines. Numer. Math. 89 (2001) 225-256. | MR | Zbl
, and ,[2] An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001) 1-102. | MR | Zbl
and ,[3] A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 1117-1138. | MR | Zbl
, and ,[4] General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155-169. | JFM
,[5] Simulation d'excavation en comportement hydro-mécanique fragile. Technical report, EDF R&D/AMA and CEA/DEN/SEMT (2007) http://www.gdrmomas.org/ex_qualifications.html.
and ,[6] An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73 (2004) 1167-1193. | MR | Zbl
and ,[7] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | MR | Zbl
,[8] Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | MR | Zbl
and ,[9] Adaptive finite element methods for parabolic problems 32 (1995) 706-740. | MR | Zbl
and ,[10] Theory and Practice of Finite Elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004). | MR | Zbl
and ,[11] Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp. 75 (2006) 1627-1658. | MR | Zbl
and ,[12] Ellitpic reconstruction and a posteriori error estimates for elliptic problems. SIAM J. Numer. Anal. 41 (2003) 1585-1594. | MR | Zbl
and ,[13] Analyse d'erreur a posteriori pour les couplages hydro-mécaniques et mise en œuvre dans Code_Aster. Ph.D. Thesis, École nationale des ponts et chaussées, France (2007). | Zbl
,[14] Improved accuracy in finite element analysis of Biot's consolidation problem. Comput. Meth. Appl. Mech. Engrg. 95 (1992) 359-382. | MR | Zbl
and ,[15] On stability and convergence of finite element approximations of Biot's consolidation problem. Internat. J. Numer. Methods Engrg. 37 (1994) 645-667. | MR | Zbl
and ,[16] Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem. SIAM J. Numer. Anal. 33 (1996) 1065-1083. | MR | Zbl
, and ,[17] Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | MR | Zbl
,[18] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | MR | Zbl
and ,[19] Diffusion in deformable media. IMA Volumes in Mathematics and its Applications 131 (2000) 115-130. | MR | Zbl
,[20] Diffusion in poro-elastic media. J. Math. Anal. Appl. 251 (2000) 310-340. | MR | Zbl
,[21] Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). | MR | Zbl
,[22] A posteriori error estimations and adaptative mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67-83. | Zbl
,[23] A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Chichester, UK (1996). | Zbl
,[24] A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195-212. | MR | Zbl
,[25] Theoretical Soil Mechanics. Wiley, New York (1936).
,
[26] A priori L
Cité par Sources :