This paper is concerned with numerical methods for compressible multicomponent fluids. The fluid components are assumed immiscible, and are separated by material interfaces, each endowed with its own equation of state (EOS). Cell averages of computational cells that are occupied by several fluid components require a “mixed-cell” EOS, which may not always be physically meaningful, and often leads to spurious oscillations. We present a new interface tracking algorithm, which avoids using mixed-cell information by solving the Riemann problem between its single-fluid neighboring cells. The resulting algorithm is oscillation-free for isolated material interfaces, conservative, and tends to produce almost perfect jumps across material fronts. The computational framework is general and may be used in conjunction with one's favorite finite-volume method. The robustness of the method is illustrated on shock-interface interaction in one space dimension, oscillating bubbles with radial symmetry and shock-bubble interaction in two space dimensions.
Mots-clés : compressible Euler equations, multicomponent fluids, material interfaces, finite-volume schemes
@article{M2AN_2008__42_6_991_0, author = {Chertock, Alina and Karni, Smadar and Kurganov, Alexander}, title = {Interface tracking method for compressible multifluids}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {991--1019}, publisher = {EDP-Sciences}, volume = {42}, number = {6}, year = {2008}, doi = {10.1051/m2an:2008036}, mrnumber = {2473317}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2008036/} }
TY - JOUR AU - Chertock, Alina AU - Karni, Smadar AU - Kurganov, Alexander TI - Interface tracking method for compressible multifluids JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 991 EP - 1019 VL - 42 IS - 6 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2008036/ DO - 10.1051/m2an:2008036 LA - en ID - M2AN_2008__42_6_991_0 ER -
%0 Journal Article %A Chertock, Alina %A Karni, Smadar %A Kurganov, Alexander %T Interface tracking method for compressible multifluids %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 991-1019 %V 42 %N 6 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2008036/ %R 10.1051/m2an:2008036 %G en %F M2AN_2008__42_6_991_0
Chertock, Alina; Karni, Smadar; Kurganov, Alexander. Interface tracking method for compressible multifluids. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 6, pp. 991-1019. doi : 10.1051/m2an:2008036. https://www.numdam.org/articles/10.1051/m2an:2008036/
[1] Generalization of the Roe scheme for the computation of mixture of perfect gases. Rech. Aérosp. 6 (1988) 31-43. | Zbl
,[2] How to prevent pressure oscillations in multicomponent flows: A quasi conservative approach. J. Comp. Phys. 125 (1996) 150-160. | MR | Zbl
,[3] Ghost-fluids for the poor: a single fluid algorithm for multifluids, in Hyperbolic problems: theory, numerics, applications, Vols. I, II (Magdeburg, 2000), Birkhäuser, Basel, Internat. Ser. Numer. Math. 140 (2001) 1-10. | MR
and ,[4] Computations of compressible multifluids. J. Comp. Phys. 169 (2001) 594-623. | MR | Zbl
and ,[5] Discrete equations for physical and numerical compressible multiphase flow mixtures. J. Comp. Phys. 186 (2003) 361-396. | MR | Zbl
and ,[6] Efficient numerical approximation of compressible multi-material flow for unstructured meshes. Comput. Fluids 4 (2003) 571-605. | MR | Zbl
, and ,[7] Front tracking for gas dynamics. J. Comp. Phys. 62 (1986) 83-110. | MR | Zbl
, , , and ,[8] Conservative locally moving mesh method for multifluid flows. Proceedings of the Fourth International Symposium on Finite Volumes for Complex Applications, Marrakech (2005) 273-284. | MR
and ,[9] A numerical method using upwind schemes for the resolution of two-phase flows. J. Comp. Phys. 136 (1997) 272-288. | MR | Zbl
, , , and ,[10] An interface tracking method for hyperbolic systems of conservation laws. Appl. Numer. Math. 10 (1992) 447-472. | MR | Zbl
,[11] A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comp. Phys. 152 (1999) 457-492. | MR | Zbl
, , and ,[12] Three-dimensional front tracking. SIAM J. Sci. Comput. 19 (1998) 703-727. | MR | Zbl
, , , , and ,[13] Conservative front tracking and level set algorithms. Proc. Natl. Acad. Sci. USA 98 (2001) 14198-14201. | MR | Zbl
, , and ,[14] Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41 (2003) 1926-1947. | MR | Zbl
, , and ,[15] Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York (1996). | MR | Zbl
and ,[16] The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case. Numer. Math. 97 (2004) 81-130. | MR | Zbl
and ,[17] The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems. ESAIM: M2AN 39 (2005) 649-692. | Numdam | MR | Zbl
, , ,[18] High order time discretization methods with the strong stability property. SIAM Rev. 43 (2001) 89-112. | MR | Zbl
, and ,[19] Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181 (1987) 313-336.
and ,[20] Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comp. Phys. 50 (1983) 235-269. | MR | Zbl
and ,[21] Uniformly high-order accurate nonoscillatory schemes, I. SIAM J. Numer. Anal. 24 (1987) 279-309. | MR | Zbl
and ,[22] Some results on uniformly high order accurate essentially non-oscillatory schemes. Appl. Numer. Math. 2 (1986) 347-377. | MR | Zbl
, , and ,[23] Correction of conservative Euler solvers for gas mixtures. J. Comp. Phys. 132 (1997) 91-107. | MR | Zbl
, and ,[24] Multicomponent flow calculations by a consistent primitive algorithm. J. Comp. Phys. 112 (1994) 31-43. | MR | Zbl
,[25] Compressible bubbles with surface tension, in Sixteenth International Conference on Numerical Methods in Fluid Dynamics (Arcachon, 1998), Springer, Berlin, Lecture Notes in Physics 515 (1998) 506-511. | MR
,[26] Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477-493. | Numdam | MR | Zbl
, , and ,[27] Numerical Schemes for Conservation Laws. Wiley, Chichester (1997). | MR | Zbl
,[28] On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141-163. | MR
and ,[29] New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comp. Phys. 160 (2000) 241-282. | MR | Zbl
and ,[30] Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21 (2001) 707-740. | MR | Zbl
, and ,[31] How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comp. Phys. 95 (1991) 59-84. | MR | Zbl
,[32] Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics. Cambridge University Press (2002). | MR | Zbl
,[33] On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 1157-1174. | MR | Zbl
and ,[34] Computing interface motion in compressible gas dynamics. J. Comp. Phys. 100 (1992) 209-228. | MR | Zbl
, and ,[35] Non-oscillatory central differencing for hyperbolic conservation laws. J. Comp. Phys. 87 (1990) 408-463. | MR | Zbl
and ,[36] On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318 (1996) 129-163. | Zbl
and ,[37] Fluctuations and signals - a framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, Academic Press, New York (1982) 219-257. | Zbl
,[38] A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comp. Phys. 150 (1999) 425-467. | MR | Zbl
and ,[39] An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comp. Phys. 142 (1998) 208-242. | MR | Zbl
,[40] A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comp. Phys. 156 (1999) 43-88. | MR | Zbl
,[41] High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995-1011. | MR | Zbl
,[42] Improved shock-capturing methods for multicomponent and reacting flows. J. Comp. Phys. 128 (1996) 237-253. | MR | Zbl
,[43] Riemann solvers and numerical methods for fluid dynamics. A practical introduction. Second edition, Springer-Verlag, Berlin (1999). | MR | Zbl
,[44] A front-tracking method for the computations of multiphase flow. J. Comp. Phys. 169 (2001) 708-759. | Zbl
, , , , , , , and ,[45] Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comp. Phys. 32 (1979) 101-136. | MR | Zbl
,[46] Five-equation model for compressible two-fluid flow. Report MAS-E0414, CWI, Amsterdam (2004). Available at http://ftp.cwi.nl/CWIreports/MAS/MAS-E0414.pdf
and ,[47] A thermodynamically consistent and fully conservative treatment of contact discontinuities for compressible multicomponent flows. J. Comp. Phys. 195 (2004) 528-559. | MR | Zbl
, , , and ,[48] Underwater explosion test cases. IHTR 2069 (1998).
,- Novel local characteristic decomposition based path-conservative central-upwind schemes, Journal of Computational Physics, Volume 524 (2025), p. 113692 | DOI:10.1016/j.jcp.2024.113692
- Low-dissipation central-upwind schemes for compressible multifluids, Journal of Computational Physics, Volume 518 (2024), p. 113311 | DOI:10.1016/j.jcp.2024.113311
- Local Characteristic Decomposition Based Central-Upwind Scheme for Compressible Multifluids, Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems, Volume 433 (2023), p. 73 | DOI:10.1007/978-3-031-40860-1_8
- Investigation of the Ripa Model via NHRS Scheme with Its Wide-Ranging Applications, Fractal and Fractional, Volume 6 (2022) no. 12, p. 745 | DOI:10.3390/fractalfract6120745
- Self-similar diffuse boundary method for phase boundary driven flow, Physics of Fluids, Volume 34 (2022) no. 11 | DOI:10.1063/5.0107739
- A high order conservative finite difference scheme for compressible two-medium flows, Journal of Computational Physics, Volume 445 (2021), p. 110597 | DOI:10.1016/j.jcp.2021.110597
- Semi-decoupling hybrid asymptotic and augmented finite volume method for nonlinear singular interface problems, Journal of Computational and Applied Mathematics, Volume 396 (2021), p. 113606 | DOI:10.1016/j.cam.2021.113606
- Hybrid Multifluid Algorithms Based on the Path-Conservative Central-Upwind Scheme, Journal of Scientific Computing, Volume 89 (2021) no. 2 | DOI:10.1007/s10915-021-01656-z
- An efficient algorithm for the multicomponent compressible Navier–Stokes equations in low- and high-Mach number regimes, Computers Fluids, Volume 178 (2019), p. 15 | DOI:10.1016/j.compfluid.2018.10.001
- High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields, Computational and Applied Mathematics, Volume 37 (2018) no. 5, p. 5775 | DOI:10.1007/s40314-018-0662-y
- A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow, Theory, Numerics and Applications of Hyperbolic Problems I, Volume 236 (2018), p. 309 | DOI:10.1007/978-3-319-91545-6_25
- A finite volume method for undercompressive shock waves in two space dimensions, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 51 (2017) no. 5, p. 1987 | DOI:10.1051/m2an/2017027
- A Hybrid Method to Solve Shallow Water Flows with Horizontal Density Gradients, Journal of Scientific Computing, Volume 73 (2017) no. 2-3, p. 753 | DOI:10.1007/s10915-017-0553-1
- Numerical Methods for Interface Coupling of Compressible and Almost Incompressible Media, SIAM Journal on Scientific Computing, Volume 39 (2017) no. 3, p. B486 | DOI:10.1137/16m1067834
- A HLLC scheme for Ripa model, Applied Mathematics and Computation, Volume 272 (2016), p. 369 | DOI:10.1016/j.amc.2015.05.137
- Well-balanced finite difference WENO schemes for the Ripa model, Computers Fluids, Volume 134-135 (2016), p. 1 | DOI:10.1016/j.compfluid.2016.04.031
- Computational and In Vitro Studies of Blast-Induced Blood-Brain Barrier Disruption, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 3, p. B347 | DOI:10.1137/15m1010750
- Combining Discrete Equations Method and Upwind Downwind-Controlled Splitting for non-reacting and reacting two-fluid computations: Two dimensional case, Computers Fluids, Volume 103 (2014), p. 132 | DOI:10.1016/j.compfluid.2014.07.019
- Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, Journal of Computational Physics, Volume 276 (2014), p. 508 | DOI:10.1016/j.jcp.2014.07.034
- Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients, Numerische Mathematik, Volume 127 (2014) no. 4, p. 595 | DOI:10.1007/s00211-013-0597-6
- Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, Journal of Computational Physics, Volume 231 (2012) no. 11, p. 4304 | DOI:10.1016/j.jcp.2012.02.013
- A Sharp Contact Discontinuity Scheme for Multimaterial Models, Finite Volumes for Complex Applications VI Problems Perspectives, Volume 4 (2011), p. 581 | DOI:10.1007/978-3-642-20671-9_61
- An interface treating technique for compressible multi-medium flow with Runge–Kutta discontinuous Galerkin method, Journal of Computational Physics, Volume 229 (2010) no. 23, p. 8823 | DOI:10.1016/j.jcp.2010.08.012
Cité par 23 documents. Sources : Crossref