The model order reduction methodology of reduced basis (RB) techniques offers efficient treatment of parametrized partial differential equations (P
Mots-clés : model reduction, reduced basis methods, finite volume methods, a-posteriori error estimates
@article{M2AN_2008__42_2_277_0, author = {Haasdonk, Bernard and Ohlberger, Mario}, title = {Reduced basis method for finite volume approximations of parametrized linear evolution equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {277--302}, publisher = {EDP-Sciences}, volume = {42}, number = {2}, year = {2008}, doi = {10.1051/m2an:2008001}, mrnumber = {2405149}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2008001/} }
TY - JOUR AU - Haasdonk, Bernard AU - Ohlberger, Mario TI - Reduced basis method for finite volume approximations of parametrized linear evolution equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 277 EP - 302 VL - 42 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2008001/ DO - 10.1051/m2an:2008001 LA - en ID - M2AN_2008__42_2_277_0 ER -
%0 Journal Article %A Haasdonk, Bernard %A Ohlberger, Mario %T Reduced basis method for finite volume approximations of parametrized linear evolution equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 277-302 %V 42 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2008001/ %R 10.1051/m2an:2008001 %G en %F M2AN_2008__42_2_277_0
Haasdonk, Bernard; Ohlberger, Mario. Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 2, pp. 277-302. doi : 10.1051/m2an:2008001. https://www.numdam.org/articles/10.1051/m2an:2008001/
[1] Automatic choice of global shape functions in structural analysis. AIAA J. 16 (1978) 525-528.
, and ,[2] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR | Zbl
, , and ,[3] First order quasilinear equations with boundary conditions. Comm. Partial Diff. Eq. 4 (1979) 1017-1034. | MR | Zbl
, and ,[4] An ‘empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 667-672. | MR | Zbl
, , and ,[5] Finite volume methods: Foundation and analysis, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst and T.J.R. Hughes Eds., John Wiley & Sons (2004).
and ,[6] Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269-361. | MR | Zbl
,[7] Discontinuous Galerkin methods for computational fluid dynamics, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst and T.J.R. Hughes Eds., John Wiley & Sons (2004). | MR
,[8] Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16 (2001) 173-261. | MR | Zbl
and ,[9] Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | MR | Zbl
, and ,[10] Finite volume methods, in Handbook of numerical analysis, volume VII, North-Holland, Amsterdam (2000) 713-1020. | MR | Zbl
, and ,[11] Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41-82. | MR | Zbl
, , and ,[12] A cell-centred finite volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006) 326-353. | MR | Zbl
, and ,[13] Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996). | MR | Zbl
and ,[14] Reduced-basis Approximations and a Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology, USA (2005).
,[15] A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157-181. | Numdam | MR | Zbl
and ,[16] Singularities in boundary value problems, Recherches en Mathématiques Appliquées 22 [Research in Applied Mathematics]. Masson, Paris (1992). | MR | Zbl
,[17] A posteriori error estimate for finite volume approximations of convection diffusion problems, in Proc. 3rd Int. Symp. on Finite Volumes for Complex Applications - Problems and Perspectives (2002) 753-760. | MR | Zbl
and ,[18] Initial-boundary value problems for linear hyperbolic systems. SIAM Rev. 28 (1986) 177-217. | MR | Zbl
,[19] Singular perturbations for a class of degenerate parabolic equations with mixed Dirichlet-Neumann boundary conditions. Ann. Math. Blaise Pascal 10 (2003) 269-296. | Numdam | MR | Zbl
and ,[20] Numerical Schemes for Conservation Laws. John Wiley & Sons and Teubner (1997). | MR | Zbl
,[21] Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002). | MR | Zbl
,[22] Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Ser. I Math. 331 (2000) 153-158. | MR | Zbl
, , , and ,[23] Nonlinear model reduction of a 2D MCFC model with internal reforming. Fuel Cells 4 (2004) 68-77.
and ,[24] Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Control AC-26 (1981) 17-32. | MR | Zbl
,[25] Certified real-time solution of parametrized partial differential equations, in Handbook of Materials Modeling, S. Yip Ed., Springer (2005) 1523-1558.
, and ,[26] Reduced basis technique for nonlinear analysis of structures. AIAA J. 18 (1980) 455-462.
and ,[27] A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations. ESAIM: M2AN 35 (2001) 355-387. | Numdam | MR | Zbl
,[28] A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations. Numer. Math. 87 (2001) 737-761. | MR | Zbl
,[29] Error estimate for the approximation of non-linear conservation laws on bounded domains by the finite volume method. Math. Comp. 75 (2006) 113-150. | MR | Zbl
and ,[30] Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering.
and ,[31] The reduced basis method for initial value problems. SIAM J. Numer. Anal. 24 (1987) 1277-1287. | MR | Zbl
and ,[32] A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. ESAIM: M2AN 36 (2002) 747-771. | Numdam | MR | Zbl
, , and ,[33] Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engineering 124 (2002) 70-80.
, , , , , and ,[34] Numerical approximation of a control problem for advection-diffusion processes, in System Modeling and Optimization, Proceedings of 22nd IFIP TC7 Conference (2006). | MR
, , and ,[35] Reduced basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423-445. | MR | Zbl
, and ,[36] Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat. Chaos 15 (2005) 997-1013. | MR | Zbl
,[37] Shape design by optimal flow control and reduced basis techniques: Applications to bypass configurations in haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland (2005).
,[38] Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press (2002).
and ,[39] A reduced-basis method for solving parameter-dependent convection-diffusion problems around rigid bodies. Technical Report 2006-03, Institute for Numerical Mathematics, Ulm University, ECCOMAS CFD (2006).
and ,[40] Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Meth. Fluids 47 (2005) 773-788. | MR | Zbl
and ,[41] Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Acad. Sci. Paris Ser. I Math. 337 (2003) 619-624. | MR | Zbl
, and ,Cité par Sources :