Analysis of a quasicontinuum method in one dimension
ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 1, pp. 57-91.

The quasicontinuum method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we aim to give a detailed a priori and a posteriori error analysis for a quasicontinuum method in one dimension. We consider atomistic models with Lennard-Jones type long-range interactions and a QC formulation which incorporates several important aspects of practical QC methods. First, we prove the existence, the local uniqueness and the stability with respect to a discrete W1,-norm of elastic and fractured atomistic solutions. We use a fixed point argument to prove the existence of a quasicontinuum approximation which satisfies a quasi-optimal a priori error bound. We then reverse the role of exact and approximate solution and prove that, if a computed quasicontinuum solution is stable in a sense that we make precise and has a sufficiently small residual, there exists a ‘nearby’ exact solution which it approximates, and we give an a posteriori error bound. We stress that, despite the fact that we use linearization techniques in the analysis, our results apply to genuinely nonlinear situations.

DOI : 10.1051/m2an:2007057
Classification : 70C20, 70-08, 65N15
Mots-clés : atomistic material models, quasicontinuum method, error analysis, stability
@article{M2AN_2008__42_1_57_0,
     author = {Ortner, Christoph and S\"uli, Endre},
     title = {Analysis of a quasicontinuum method in one dimension},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {57--91},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {1},
     year = {2008},
     doi = {10.1051/m2an:2007057},
     mrnumber = {2387422},
     zbl = {1139.74004},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an:2007057/}
}
TY  - JOUR
AU  - Ortner, Christoph
AU  - Süli, Endre
TI  - Analysis of a quasicontinuum method in one dimension
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2008
SP  - 57
EP  - 91
VL  - 42
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an:2007057/
DO  - 10.1051/m2an:2007057
LA  - en
ID  - M2AN_2008__42_1_57_0
ER  - 
%0 Journal Article
%A Ortner, Christoph
%A Süli, Endre
%T Analysis of a quasicontinuum method in one dimension
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2008
%P 57-91
%V 42
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an:2007057/
%R 10.1051/m2an:2007057
%G en
%F M2AN_2008__42_1_57_0
Ortner, Christoph; Süli, Endre. Analysis of a quasicontinuum method in one dimension. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 1, pp. 57-91. doi : 10.1051/m2an:2007057. https://www.numdam.org/articles/10.1051/m2an:2007057/

[1] X. Blanc, C. Le Bris and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics: the convex case. Acta Math. Appl. Sinica English Series 23 (2007) 209-216. | MR

[2] A. Braides and M.S. Gelli, Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7 (2002) 41-66. | MR | Zbl

[3] A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146 (1999) 23-58. | MR | Zbl

[4] A. Braides, A.J. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180 (2006) 151-182. | MR | Zbl

[5] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | MR | Zbl

[6] M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation. ESAIM: M2AN 42 (2008) 113-139. | Numdam | MR | Zbl

[7] G. Dolzmann, Optimal convergence for the finite element method in Campanato spaces. Math. Comp. 68 (1999) 1397-1427. | MR | Zbl

[8] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87-132. | MR | Zbl

[9] W. E and P. Ming, Analysis of multiscale methods. J. Comput. Math. 22 (2004) 210-219. Special issue dedicated to the 70th birthday of Professor Zhong-Ci Shi. | MR | Zbl

[10] W. E and P. Ming, Analysis of the local quasicontinuum method, in Frontiers and prospects of contemporary applied mathematics, Ser. Contemp. Appl. Math. CAM 6, Higher Ed. Press, Beijing (2005) 18-32. | MR

[11] D.J. Higham, Trust region algorithms and timestep selection. SIAM J. Numer. Anal. 37 (1999) 194-210. | MR | Zbl

[12] J.E. Jones, On the Determination of Molecular Fields. III. From Crystal Measurements and Kinetic Theory Data. Proc. Roy. Soc. London A. 106 (1924) 709-718.

[13] B. Lemaire, The proximal algorithm, in New methods in optimization and their industrial uses (Pau/Paris, 1987), of Internat. Schriftenreihe Numer. Math. 87, Birkhäuser, Basel (1989) 73-87. | MR | Zbl

[14] P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657-675. | MR | Zbl

[15] P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material without defects. SIAM J. Numer. Anal. 45 (2007) 313-332 (electronic). | MR

[16] R.E. Miller and E.B. Tadmor, The quasicontinuum method: overview, applications and current directions. J. Computer-Aided Mater. Des. 9 (2003) 203-239.

[17] P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34 (1929) 57-64. | JFM

[18] M. Ortiz, R. Phillips and E.B. Tadmor, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 1529-1563.

[19] C. Ortner, Gradient flows as a selection procedure for equilibria of nonconvex energies. SIAM J. Math. Anal. 38 (2006) 1214-1234 (electronic). | MR | Zbl

[20] C. Ortner and E. Süli, A posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Technical Report NA06/13, Oxford University Computing Laboratory (2006).

[21] C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45 (2007) 1370-1397. | MR | Zbl

[22] M. Plum, Computer-assisted enclosure methods for elliptic differential equations. Linear Algebra Appl. 324 (2001) 147-187. Special issue on linear algebra in self-validating methods. | MR | Zbl

[23] L. Truskinovsky, Fracture as a phase transformation, in Contemporary research in mechanics and mathematics of materials, R.C. Batra and M.F. Beatty Eds., CIMNE (1996) 322-332.

[24] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp. 62 (1994) 445-475. | MR | Zbl

[25] E. Zeidler, Nonlinear functional analysis and its applications. I Fixed-point theorems. Springer-Verlag, New York (1986). Translated from the German by Peter R. Wadsack. | MR | Zbl

  • Wang, Yangshuai; Zhang, Lei; Wang, Hao A priori analysis of a higher-order nonlinear elasticity model for an atomistic chain with periodic boundary condition, IMA Journal of Numerical Analysis, Volume 41 (2021) no. 2, p. 1465 | DOI:10.1093/imanum/draa004
  • Braun, Julian; Ortner, Christoph Sharp Uniform Convergence Rate of the Supercell Approximation of a Crystalline Defect, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 1, p. 279 | DOI:10.1137/18m122830x
  • Rodrigues, A. S.; Kevrekidis, P. G.; Dobson, M. N -break states in a chain of nonlinear oscillators, Physical Review E, Volume 99 (2019) no. 2 | DOI:10.1103/physreve.99.022201
  • Wang, Hao; Yang, Siyao Analysis of the Residual-Type and the Gradient Recovery-Type a Posteriori Error Estimators for a Consistent Atomistic-to-Continuum Coupling Method in One-Dimension, Multiscale Modeling Simulation, Volume 16 (2018) no. 2, p. 679 | DOI:10.1137/17m1118579
  • Wang, Hao; Liao, Mingjie; Lin, Ping; Zhang, Lei A Posteriori Error Estimation and Adaptive Algorithm for Atomistic/Continuum Coupling in Two Dimensions, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 4, p. A2087 | DOI:10.1137/17m1131106
  • Schäffner, Mathias; Schlömerkemper, Anja On a Γ-Convergence Analysis of a Quasicontinuum Method, Multiscale Modeling Simulation, Volume 13 (2015) no. 1, p. 132 | DOI:10.1137/140971439
  • Yang, Qingcheng; Biyikli, Emre; To, Albert C. Multiresolution molecular mechanics: Convergence and error structure analysis, Computer Methods in Applied Mechanics and Engineering, Volume 269 (2014), p. 20 | DOI:10.1016/j.cma.2013.10.012
  • Li, Xiantao; Ming, Pingbing A Study on the Quasi-continuum Approximations of a One-Dimensional Fracture Model, Multiscale Modeling Simulation, Volume 12 (2014) no. 3, p. 1379 | DOI:10.1137/130939547
  • Luskin, Mitchell; Ortner, Christoph Atomistic-to-continuum coupling, Acta Numerica, Volume 22 (2013), p. 397 | DOI:10.1017/s0962492913000068
  • Makridakis, Charalambos; Süli, Endre Finite Element Analysis of Cauchy–Born Approximations to Atomistic Models, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 3, p. 813 | DOI:10.1007/s00205-012-0582-8
  • Peszynska, Malgorzata Methane in Subsurface: Mathematical Modeling and Computational Challenges, Computational Challenges in the Geosciences, Volume 156 (2013), p. 71 | DOI:10.1007/978-1-4614-7434-0_4
  • Blanc, X.; Legoll, F. A numerical strategy for coarse-graining two-dimensional atomistic models at finite temperature: The membrane case, Computational Materials Science, Volume 66 (2013), p. 84 | DOI:10.1016/j.commatsci.2012.04.045
  • Abdulle, Assyr; Lin, Ping; Shapeev, Alexander V. A Priori and A Posteriori W1, Error Analysis of a QC Method for Complex Lattices, SIAM Journal on Numerical Analysis, Volume 51 (2013) no. 4, p. 2357 | DOI:10.1137/120894300
  • Hudson, Thomas; Ortner, Christoph On the stability of Bravais lattices and their Cauchy–Born approximations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 1, p. 81 | DOI:10.1051/m2an/2011014
  • Ortner, Christoph The role of the patch test in 2D atomistic-to-continuum coupling methods, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 6, p. 1275 | DOI:10.1051/m2an/2012005
  • Li, Xingjie Helen; Luskin, Mitchell; Ortner, Christoph Positive Definiteness of the Blended Force-Based Quasicontinuum Method, Multiscale Modeling Simulation, Volume 10 (2012) no. 3, p. 1023 | DOI:10.1137/110859270
  • Abdulle, Assyr; Lin, Ping; Shapeev, Alexander V. Numerical Methods for Multilattices, Multiscale Modeling Simulation, Volume 10 (2012) no. 3, p. 696 | DOI:10.1137/110841163
  • Luskin, Mitchell; Ortner, Christoph Linear Stationary Iterative Methods for the Force-Based Quasicontinuum Approximation, Numerical Analysis of Multiscale Computations, Volume 82 (2012), p. 331 | DOI:10.1007/978-3-642-21943-6_14
  • Van Koten, Brian; Li, Xingjie Helen; Luskin, Mitchell; Ortner, Christoph A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods, Numerical Analysis of Multiscale Problems, Volume 83 (2012), p. 67 | DOI:10.1007/978-3-642-22061-6_3
  • Dobson, M.; Luskin, M.; Ortner, C. Iterative methods for the force-based quasicontinuum approximation: Analysis of a 1D model problem, Computer Methods in Applied Mechanics and Engineering, Volume 200 (2011) no. 37-40, p. 2697 | DOI:10.1016/j.cma.2010.07.008
  • ORTNER, CHRISTOPH; WANG, HAO A PRIORI ERROR ESTIMATES FOR ENERGY-BASED QUASICONTINUUM APPROXIMATIONS OF A PERIODIC CHAIN, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 12, p. 2491 | DOI:10.1142/s0218202511005817
  • Shapeev, Alexander V. Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in One and Two Dimensions, Multiscale Modeling Simulation, Volume 9 (2011) no. 3, p. 905 | DOI:10.1137/100792421
  • Bělík, Pavel; Luskin, Mitchell Analysis of the Quasi-Nonlocal Approximation of Linear and Circular Chains in the Plane, Multiscale Modeling Simulation, Volume 9 (2011) no. 4, p. 1495 | DOI:10.1137/100806242
  • Makridakis, Charalambos; Ortner, Christoph; Süli, Endre A priori error analysis of two force-based atomistic/continuum models of a periodic chain, Numerische Mathematik, Volume 119 (2011) no. 1, p. 83 | DOI:10.1007/s00211-011-0380-5
  • Van Koten, Brian; Luskin, Mitchell Analysis of Energy-Based Blended Quasi-Continuum Approximations, SIAM Journal on Numerical Analysis, Volume 49 (2011) no. 5, p. 2182 | DOI:10.1137/10081071x
  • Dobson, Matthew; Luskin, Mitchell; Ortner, Christoph Stability, Instability, and Error of the Force-based Quasicontinuum Approximation, Archive for Rational Mechanics and Analysis, Volume 197 (2010) no. 1, p. 179 | DOI:10.1007/s00205-009-0276-z
  • Blanc, X.; Le Bris, C.; Legoll, F.; Patz, C. Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches, Journal of Nonlinear Science, Volume 20 (2010) no. 2, p. 241 | DOI:10.1007/s00332-009-9057-y
  • Dobson, M.; Luskin, M.; Ortner, C. Accuracy of quasicontinuum approximations near instabilities, Journal of the Mechanics and Physics of Solids, Volume 58 (2010) no. 10, p. 1741 | DOI:10.1016/j.jmps.2010.06.011
  • Dobson, M.; Luskin, M.; Ortner, C. Sharp Stability Estimates for the Force-Based Quasicontinuum Approximation of Homogeneous Tensile Deformation, Multiscale Modeling Simulation, Volume 8 (2010) no. 3, p. 782 | DOI:10.1137/090767005
  • Dobson, Matthew; Luskin, Mitchell An analysis of the effect of ghost force oscillation on quasicontinuum error, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 43 (2009) no. 3, p. 591 | DOI:10.1051/m2an/2009007
  • Ming, Pingbing; Yang, Jerry Zhijian Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method, Multiscale Modeling Simulation, Volume 7 (2009) no. 4, p. 1838 | DOI:10.1137/080725842
  • Dobson, Matthew; Luskin, Mitchell An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation, SIAM Journal on Numerical Analysis, Volume 47 (2009) no. 4, p. 2455 | DOI:10.1137/08073723x
  • Luskin, Mitchell; Ortner, Christoph An Analysis of Node-Based Cluster Summation Rules in the Quasicontinuum Method, SIAM Journal on Numerical Analysis, Volume 47 (2009) no. 4, p. 3070 | DOI:10.1137/080743391
  • Arndt, Marcel; Luskin, Mitchell Goal-oriented adaptive mesh refinement for the quasicontinuum approximation of a Frenkel-Kontorova model, Computer Methods in Applied Mechanics and Engineering, Volume 197 (2008) no. 49-50, p. 4298 | DOI:10.1016/j.cma.2008.05.005
  • Dobson, Matthew; Luskin, Mitchell Iterative Solution of the Quasicontinuum Equilibrium Equations with Continuation, Journal of Scientific Computing, Volume 37 (2008) no. 1, p. 19 | DOI:10.1007/s10915-008-9208-6
  • Arndt, Marcel; Luskin, Mitchell Error Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel–Kontorova Model, Multiscale Modeling Simulation, Volume 7 (2008) no. 1, p. 147 | DOI:10.1137/070688559

Cité par 36 documents. Sources : Crossref