Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems : non-overlapping case
ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 1, pp. 21-54.

We propose and study some new additive, two-level non-overlapping Schwarz preconditioners for the solution of the algebraic linear systems arising from a wide class of discontinuous Galerkin approximations of elliptic problems that have been proposed up to now. In particular, two-level methods for both symmetric and non-symmetric schemes are introduced and some interesting features, which have no analog in the conforming case, are discussed. Both the construction and analysis of the proposed domain decomposition methods are presented in a unified framework. For symmetric schemes, it is shown that the condition number of the preconditioned system is of order O(H/h), where H and h are the mesh sizes of the coarse and fine grids respectively, which are assumed to be nested. For non-symmetric schemes, we show by numerical computations that the Eisenstat et al. [SIAM J. Numer. Anal. 20 (1983) 345-357] GMRES convergence theory, generally used in the analysis of Schwarz methods for non-symmetric problems, cannot be applied even if the numerical results show that the GMRES applied to the preconditioned systems converges in a finite number of steps and the proposed preconditioners seem to be scalable. Extensive numerical experiments to validate our theory and to illustrate the performance and robustness of the proposed two-level methods are presented.

DOI : 10.1051/m2an:2007006
Classification : 65N30, 65N55
Mots-clés : domain decomposition methods, discontinuous Galerkin, elliptic problems
@article{M2AN_2007__41_1_21_0,
     author = {Antonietti, Paola F. and Ayuso, Blanca},
     title = {Schwarz domain decomposition preconditioners for discontinuous {Galerkin} approximations of elliptic problems : non-overlapping case},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {21--54},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {1},
     year = {2007},
     doi = {10.1051/m2an:2007006},
     mrnumber = {2323689},
     zbl = {1129.65080},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an:2007006/}
}
TY  - JOUR
AU  - Antonietti, Paola F.
AU  - Ayuso, Blanca
TI  - Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems : non-overlapping case
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2007
SP  - 21
EP  - 54
VL  - 41
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an:2007006/
DO  - 10.1051/m2an:2007006
LA  - en
ID  - M2AN_2007__41_1_21_0
ER  - 
%0 Journal Article
%A Antonietti, Paola F.
%A Ayuso, Blanca
%T Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems : non-overlapping case
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2007
%P 21-54
%V 41
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an:2007006/
%R 10.1051/m2an:2007006
%G en
%F M2AN_2007__41_1_21_0
Antonietti, Paola F.; Ayuso, Blanca. Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems : non-overlapping case. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 1, pp. 21-54. doi : 10.1051/m2an:2007006. https://www.numdam.org/articles/10.1051/m2an:2007006/

[1] R.A. Adams, Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, Pure and Applied Mathematics, Vol. 65 (1975). | MR | Zbl

[2] P.F. Antonietti, A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3483-3503.

[3] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | Zbl

[4] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001/02) 1749-1779 (electronic). | Zbl

[5] I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863-875. | Zbl

[6] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267-279. | Zbl

[7] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, R. Decuypere and G. Dibelius Eds., Antwerpen, Belgium (1997) 99-108, Technologisch Instituut.

[8] C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311-341. | Zbl

[9] S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306-324 (electronic). | Zbl

[10] S.C. Brenner and K. Wang, Two-level additive Schwarz preconditioners for C0 interior penalty methods. Numer. Math. 102 (2005) 231-255. | Zbl

[11] F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo, Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16 (2000) 365-378. | Zbl

[12] F. Brezzi, L.D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14 (2004) 1893-1903. | Zbl

[13] X.-C. Cai and O.B. Widlund, Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Statist. Comput. 13 (1992) 243-258. | Zbl

[14] P.E. Castillo, Local Discontinuous Galerkin methods for convection-diffusion and elliptic problems. Ph.D. thesis, University of Minnesota, Minneapolis (2001).

[15] P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676-1706 (electronic). | Zbl

[16] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam, Studies in Mathematics and its Applications, Vol. 4 (1978). | MR | Zbl

[17] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems, in High-order methods for computational physics, Springer, Berlin, Lect. Notes Comput. Sci. Eng. 9 (1999) 69-224. | Zbl

[18] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463 (electronic). | Zbl

[19] B. Cockburn, G.E. Karniadakis, and C.-W. Shu. The development of discontinuous Galerkin methods, in Discontinuous Galerkin methods (Newport, RI, 1999), Springer, Berlin, Lect. Notes Comput. Sci. Eng. 11 (2000) 3-50. | Zbl

[20] C. Dawson, S. Sun and M.F. Wheeler, Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Engrg. 193 (2004) 2565-2580. | Zbl

[21] J. Douglas, Jr., and T. Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods, in Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975), Springer, Berlin, Lect. Notes Phys. 58 (1976) 207-216.

[22] S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983) 345-357. | Zbl

[23] X. Feng and O.A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1343-1365 (electronic). | Zbl

[24] X. Feng and O.A. Karakashian, Analysis of two-level overlapping additive Schwarz preconditioners for a discontinuous Galerkin method. In Domain decomposition methods in science and engineering (Lyon, 2000), Theory Eng. Appl. Comput. Methods, Internat. Center Numer. Methods Eng. (CIMNE), Barcelona (2002) 237-245. | Zbl

[25] G.H. Golub and C.F. Van Loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, third edition (1996). | MR | Zbl

[26] J. Gopalakrishnan and G. Kanschat. Application of unified DG analysis to preconditioning DG methods, in Computational Fluid and Solid Mechanics 2003, K.J. Bathe Ed., Elsevier (2003) 1943-1945.

[27] J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method. Numer. Math. 95 (2003) 527-550. | Zbl

[28] B. Heinrich and K. Pietsch, Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217-238. | Zbl

[29] P. Houston and E. Süli, hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput. 23 (2001) 1226-1252 (electronic). | Zbl

[30] C. Lasser and A. Toselli, An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems. Math. Comp. 72 (2003) 1215-1238 (electronic). | Zbl

[31] P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv. 1 (1994) 121-220. | Zbl

[32] P.-L. Lions, On the Schwarz alternating method. I, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), SIAM, Philadelphia, PA (1988) 1-42. | Zbl

[33] P.-L. Lions, On the Schwarz alternating method. II. Stochastic interpretation and order properties, in Domain decomposition methods (Los Angeles, CA, 1988), SIAM, Philadelphia, PA (1989) 47-70. | Zbl

[34] P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), SIAM, Philadelphia, PA (1990) 202-223. | Zbl

[35] W.H. Reed and T. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973).

[36] B. Rivière, M.F. Wheeler and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3 (1999) 337-360. | Zbl

[37] B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902-931 (electronic). | Zbl

[38] Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856-869. | Zbl

[39] M. Sarkis and D.B. Szyld, Optimal left and right additive Schwarz preconditioning for Minimal Residual methods with euclidean and energy norms. Comput. Methods Appl. Mech. Engrg. 196 (2007) 1612-1621.

[40] B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain decomposition. Cambridge University Press, Cambridge, Parallel multilevel methods for elliptic partial differential equations (1996). | MR | Zbl

[41] G. Starke, Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems. Numer. Math. 78 (1997) 103-117. | Zbl

[42] R. Stenberg, Mortaring by a method of J. A. Nitsche, in Computational mechanics (Buenos Aires, 1998), pages CD-ROM file. Centro Internac. Métodos Numér. Ing., Barcelona (1998).

[43] A. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory, Springer Series in Computational Mathematics 34, Springer-Verlag, Berlin (2005). | Zbl

[44] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | Zbl

[45] J.H. Wilkinson, The algebraic eigenvalue problem. Monographs on Numerical Analysis, The Clarendon Press Oxford University Press, New York (1988), Oxford Science Publications. | MR | Zbl

[46] J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581-613. | Zbl

[47] J. Xu and L. Zikatanov, The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc. 15 (2002) 573-597 (electronic). | Zbl

[48] J. Xu and J. Zou. Some nonoverlapping domain decomposition methods. SIAM Rev. 40 (1998) 857-914 (electronic). | Zbl

  • Huynh, Ngoc Mai Monica; Pavarino, Luca F.; Scacchi, Simone GDSW preconditioners for composite Discontinuous Galerkin discretizations of multicompartment reaction–diffusion problems, Computer Methods in Applied Mechanics and Engineering, Volume 433 (2025), p. 117501 | DOI:10.1016/j.cma.2024.117501
  • Antonietti, P.F.; Farenga, N.; Manuzzi, E.; Martinelli, G.; Saverio, L. Agglomeration of polygonal grids using graph neural networks with applications to multigrid solvers, Computers Mathematics with Applications, Volume 154 (2024), p. 45 | DOI:10.1016/j.camwa.2023.11.015
  • Li, Ruo; Liu, Qicheng; Yang, Fanyi Preconditioned Nonsymmetric/Symmetric Discontinuous Galerkin Method for Elliptic Problem with Reconstructed Discontinuous Approximation, Journal of Scientific Computing, Volume 100 (2024) no. 3 | DOI:10.1007/s10915-024-02639-6
  • Huynh, Ngoc Mai Monica; Chegini, Fatemeh; Pavarino, Luca Franco; Weiser, Martin; Scacchi, Simone Convergence Analysis of BDDC Preconditioners for Composite DG Discretizations of the Cardiac Cell-By-Cell Model, SIAM Journal on Scientific Computing, Volume 45 (2023) no. 6, p. A2836 | DOI:10.1137/22m1542532
  • Pazner, Will; Kolev, Tzanio Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refinement, Communications on Applied Mathematics and Computation, Volume 4 (2022) no. 2, p. 697 | DOI:10.1007/s42967-021-00136-3
  • Schneckenleitner, Rainer; Takacs, Stefan Convergence Theory for IETI-DP Solvers for Discontinuous Galerkin Isogeometric Analysis that is Explicit in ℎ and 𝑝, Computational Methods in Applied Mathematics, Volume 22 (2022) no. 1, p. 199 | DOI:10.1515/cmam-2020-0164
  • Green, David; Hu, Xiaozhe; Lore, Jeremy; Mu, Lin; Stowell, Mark L. An efficient high-order numerical solver for diffusion equations with strong anisotropy, Computer Physics Communications, Volume 276 (2022), p. 108333 | DOI:10.1016/j.cpc.2022.108333
  • Liu, Yingzhi; He, Yinnian Two-Level Schwarz Methods for a Discontinuous Galerkin Approximation of Elliptic Problems with Jump Coefficients, Journal of Scientific Computing, Volume 84 (2020) no. 1 | DOI:10.1007/s10915-020-01257-2
  • Abdulle, Assyr; Rosilho de Souza, Giacomo A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 4, p. 1269 | DOI:10.1051/m2an/2019022
  • Herrmann, Marc; Herzog, Roland; Schmidt, Stephan; Vidal-Núñez, José; Wachsmuth, Gerd Discrete Total Variation with Finite Elements and Applications to Imaging, Journal of Mathematical Imaging and Vision, Volume 61 (2019) no. 4, p. 411 | DOI:10.1007/s10851-018-0852-7
  • Antonietti, P. F.; Pennesi, G. V-cycle Multigrid Algorithms for Discontinuous Galerkin Methods on Non-nested Polytopic Meshes, Journal of Scientific Computing, Volume 78 (2019) no. 1, p. 625 | DOI:10.1007/s10915-018-0783-x
  • Smears, Iain Nonoverlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Approximations of Hamilton–Jacobi–Bellman Equations, Journal of Scientific Computing, Volume 74 (2018) no. 1, p. 145 | DOI:10.1007/s10915-017-0428-5
  • Brenner, Susanne C.; Oh, Duk-Soon; Sung, Li-Yeng Multigrid methods for saddle point problems: Darcy systems, Numerische Mathematik, Volume 138 (2018) no. 2, p. 437 | DOI:10.1007/s00211-017-0911-9
  • Hu, Qiya; Zhao, Lin Domain Decomposition Preconditioners for the System Generated by Discontinuous Galerkin Discretization of 2D-3T Heat Conduction Equations, Communications in Computational Physics, Volume 22 (2017) no. 4, p. 1069 | DOI:10.4208/cicp.240515.040517a
  • Antonietti, Paola F.; Sarti, Marco; Verani, Marco; Zikatanov, Ludmil T. A Uniform Additive Schwarz Preconditioner for High-Order Discontinuous Galerkin Approximations of Elliptic Problems, Journal of Scientific Computing, Volume 70 (2017) no. 2, p. 608 | DOI:10.1007/s10915-016-0259-9
  • Chen, Long; Hu, Jun; Huang, Xuehai Fast auxiliary space preconditioners for linear elasticity in mixed form, Mathematics of Computation, Volume 87 (2017) no. 312, p. 1601 | DOI:10.1090/mcom/3285
  • Gander, Martin; Hajian, Soheil Analysis of Schwarz methods for a hybridizable discontinuous Galerkin discretization: The many-subdomain case, Mathematics of Computation, Volume 87 (2017) no. 312, p. 1635 | DOI:10.1090/mcom/3293
  • Cangiani, Andrea; Dong, Zhaonan; Georgoulis, Emmanuil H.; Houston, Paul Introduction, hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes (2017), p. 1 | DOI:10.1007/978-3-319-67673-9_1
  • Dryja, Maksymilian; Krzyżanowski, Piotr Additive Schwarz Methods for DG Discretization of Elliptic Problems with Discontinuous Coefficient, Domain Decomposition Methods in Science and Engineering XXII, Volume 104 (2016), p. 167 | DOI:10.1007/978-3-319-18827-0_15
  • Ayuso de Dios, Blanca; Hiptmair, Ralf; Pagliantini, Cecilia Auxiliary space preconditioners for SIP-DG discretizations of H(curl)-elliptic problems with discontinuous coefficients, IMA Journal of Numerical Analysis (2016), p. drw018 | DOI:10.1093/imanum/drw018
  • Karakashian, Ohannes; Collins, Craig Two-level additive Schwarz methods for discontinuous Galerkin approximations of second-order elliptic problems, IMA Journal of Numerical Analysis (2016), p. drw061 | DOI:10.1093/imanum/drw061
  • Joshi, Sumedh M.; Thomsen, Greg N.; Diamessis, Peter J. Deflation-accelerated preconditioning of the Poisson–Neumann Schur problem on long domains with a high-order discontinuous element-based collocation method, Journal of Computational Physics, Volume 313 (2016), p. 209 | DOI:10.1016/j.jcp.2016.02.033
  • Krzyżanowski, Piotr On a nonoverlapping additive Schwarz method for h‐p discontinuous Galerkin discretization of elliptic problems, Numerical Methods for Partial Differential Equations, Volume 32 (2016) no. 6, p. 1572 | DOI:10.1002/num.22063
  • Dryja, Maksymilian; Krzyżanowski, Piotr A massively parallel nonoverlapping additive Schwarz method for discontinuous Galerkin discretization of elliptic problems, Numerische Mathematik, Volume 132 (2016) no. 2, p. 347 | DOI:10.1007/s00211-015-0718-5
  • Antonietti, P. F.; Ayuso de Dios, B.; Bertoluzza, S.; Pennacchio, M. Substructuring preconditioners for an h h - p p domain decomposition method with interior penalty mortaring, Calcolo, Volume 52 (2015) no. 3, p. 289 | DOI:10.1007/s10092-014-0117-9
  • Brix, Kolja; Campos Pinto, Martin; Canuto, Claudio; Dahmen, Wolfgang Multilevel preconditioning of discontinuous Galerkin spectral element methods. Part I: geometrically conforming meshes, IMA Journal of Numerical Analysis, Volume 35 (2015) no. 4, p. 1487 | DOI:10.1093/imanum/dru053
  • van Slingerland, P.; Vuik, C. Scalable two-level preconditioning and deflation based on a piecewise constant subspace for (SIP)DG systems for diffusion problems, Journal of Computational and Applied Mathematics, Volume 275 (2015), p. 61 | DOI:10.1016/j.cam.2014.06.028
  • Antonietti, Paola F.; Perugia, Ilaria; Davide, Zaliani Schwarz Domain Decomposition Preconditioners for Plane Wave Discontinuous Galerkin Methods, Numerical Mathematics and Advanced Applications - ENUMATH 2013, Volume 103 (2015), p. 557 | DOI:10.1007/978-3-319-10705-9_55
  • Antonietti, Paola F.; Sarti, Marco; Verani, Marco Multigrid Algorithms for hp-Discontinuous Galerkin Discretizations of Elliptic Problems, SIAM Journal on Numerical Analysis, Volume 53 (2015) no. 1, p. 598 | DOI:10.1137/130947015
  • van Slingerland, P.; Vuik, C. Fast linear solver for diffusion problems with applications to pressure computation in layered domains, Computational Geosciences, Volume 18 (2014) no. 3-4, p. 343 | DOI:10.1007/s10596-014-9400-8
  • Kim, Hyea Hyun; Chung, Eric T.; Lee, Chak Shing A BDDC algorithm for a class of staggered discontinuous Galerkin methods, Computers Mathematics with Applications, Volume 67 (2014) no. 7, p. 1373 | DOI:10.1016/j.camwa.2014.02.001
  • de Dios, Blanca Ayuso; Zikatanov, Ludmil Space Decompositions and Solvers for Discontinuous Galerkin Methods, Domain Decomposition Methods in Science and Engineering XXI, Volume 98 (2014), p. 3 | DOI:10.1007/978-3-319-05789-7_1
  • Canuto, C.; Pavarino, L. F.; Pieri, A. B. ASM-BDDC Preconditioners with Variable Polynomial Degree for CG- and DG-SEM, Domain Decomposition Methods in Science and Engineering XXI, Volume 98 (2014), p. 547 | DOI:10.1007/978-3-319-05789-7_52
  • Antonietti, Paola F.; Giani, Stefano; Houston, Paul Domain Decomposition Preconditioners for Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains, Journal of Scientific Computing, Volume 60 (2014) no. 1, p. 203 | DOI:10.1007/s10915-013-9792-y
  • Cangiani, Andrea; Georgoulis, Emmanuil H.; Houston, Paul hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 10, p. 2009 | DOI:10.1142/s0218202514500146
  • Kanschat, Guido; Sharma, Natasha Divergence-Conforming Discontinuous Galerkin Methods and C0 Interior Penalty Methods, SIAM Journal on Numerical Analysis, Volume 52 (2014) no. 4, p. 1822 | DOI:10.1137/120902975
  • de Dios, B. Ayuso; Barker, A. T.; Vassilevski, P. S. A Combined Preconditioning Strategy for Nonsymmetric Systems, SIAM Journal on Scientific Computing, Volume 36 (2014) no. 6, p. A2533 | DOI:10.1137/120888946
  • Baudron, A.-M.; Lautard, J.J.; Maday, Y.; Mula, O.; Caruge, D.; Calvin, C.; Diop, C.M.; Malvagi, F.; Trama, J.-C., SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (2014), p. 04103 | DOI:10.1051/snamc/201404103
  • Antonietti, Paola F.; Houston, Paul Preconditioning High–Order Discontinuous Galerkin Discretizations of Elliptic Problems, Domain Decomposition Methods in Science and Engineering XX, Volume 91 (2013), p. 231 | DOI:10.1007/978-3-642-35275-1_26
  • Diosady, Laslo; Darmofal, David BDDC for Higher-Order Discontinuous Galerkin Discretizations, Domain Decomposition Methods in Science and Engineering XX, Volume 91 (2013), p. 559 | DOI:10.1007/978-3-642-35275-1_66
  • Congreve, Scott; Houston, Paul; Wihler, Thomas P. Two-Grid hp-Version Discontinuous Galerkin Finite Element Methods for Second-Order Quasilinear Elliptic PDEs, Journal of Scientific Computing, Volume 55 (2013) no. 2, p. 471 | DOI:10.1007/s10915-012-9644-1
  • Ayuso de Dios, Blanca; Holst, Michael; Zhu, Yunrong; Zikatanov, Ludmil Multilevel preconditioners for discontinuous Galerkin approximations of elliptic problems with jump coefficients, Mathematics of Computation, Volume 83 (2013) no. 287, p. 1083 | DOI:10.1090/s0025-5718-2013-02760-3
  • Brenner, Susanne C.; Park, Eun‐Hee; Sung, Li‐Yeng A balancing domain decomposition by constraints preconditioner for a weakly over‐penalized symmetric interior penalty method, Numerical Linear Algebra with Applications, Volume 20 (2013) no. 3, p. 472 | DOI:10.1002/nla.1838
  • Dryja, Maksymilian; Galvis, Juan; Sarkis, Marcus A FETI-DP Preconditioner for a Composite Finite Element and Discontinuous Galerkin Method, SIAM Journal on Numerical Analysis, Volume 51 (2013) no. 1, p. 400 | DOI:10.1137/100796571
  • Chung, Eric T.; Kim, Hyea Hyun; Widlund, Olof B. Two-Level Overlapping Schwarz Algorithms for a Staggered Discontinuous Galerkin Method, SIAM Journal on Numerical Analysis, Volume 51 (2013) no. 1, p. 47 | DOI:10.1137/110849432
  • Gigante, Giacomo; Pozzoli, Matteo; Vergara, Christian Optimized Schwarz Methods for the Diffusion-Reaction Problem with Cylindrical Interfaces, SIAM Journal on Numerical Analysis, Volume 51 (2013) no. 6, p. 3402 | DOI:10.1137/120887758
  • Dryja, Maksymilian; Galvis, Juan; Sarkis, Marcus Neumann‐Neumann methods for a DG discretization on geometrically nonconforming substructures, Numerical Methods for Partial Differential Equations, Volume 28 (2012) no. 4, p. 1194 | DOI:10.1002/num.20678
  • Diosady, Laslo T.; Darmofal, David L. A Unified Analysis of Balancing Domain Decomposition by Constraints for Discontinuous Galerkin Discretizations, SIAM Journal on Numerical Analysis, Volume 50 (2012) no. 3, p. 1695 | DOI:10.1137/100812434
  • Ayuso, Blanca; Zikatanov, Ludmil T. A Simple Uniformly Convergent Iterative Method for the Non-symmetric Incomplete Interior Penalty Discontinuous Galerkin Discretization, Domain Decomposition Methods in Science and Engineering XIX, Volume 78 (2011), p. 335 | DOI:10.1007/978-3-642-11304-8_38
  • Brenner, Susanne C. C 0 Interior Penalty Methods, Frontiers in Numerical Analysis - Durham 2010, Volume 85 (2011), p. 79 | DOI:10.1007/978-3-642-23914-4_2
  • Antonietti, Paola F.; Houston, Paul A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods, Journal of Scientific Computing, Volume 46 (2011) no. 1, p. 124 | DOI:10.1007/s10915-010-9390-1
  • Barker, A. T.; Brenner, S. C.; Park, E.-H.; Sung, L.-Y. Two-Level Additive Schwarz Preconditioners for a Weakly Over-Penalized Symmetric Interior Penalty Method, Journal of Scientific Computing, Volume 47 (2011) no. 1, p. 27 | DOI:10.1007/s10915-010-9419-5
  • Antonietti, Paola F.; Süli, Endre Domain Decomposition Preconditioning for Discontinuous Galerkin Approximations of Convection-Diffusion Problems, Domain Decomposition Methods in Science and Engineering XVIII, Volume 70 (2009), p. 259 | DOI:10.1007/978-3-642-02677-5_28
  • Ayuso de Dios, Blanca; Zikatanov, Ludmil Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations, Journal of Scientific Computing, Volume 40 (2009) no. 1-3, p. 4 | DOI:10.1007/s10915-009-9293-1
  • Prill, F.; Lukáčová-Medviďová, M.; Hartmann, R. Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 5, p. 3503 | DOI:10.1137/080728457
  • Antonietti, Paola F.; Ayuso, Blanca Class of Preconditioners for Discontinuous Galerkin Approximations of Elliptic Problems, Domain Decomposition Methods in Science and Engineering XVII, Volume 60 (2008), p. 185 | DOI:10.1007/978-3-540-75199-1_19
  • Antonietti, Paola F.; Ayuso, Blanca Multiplicative Schwarz Methods for Discontinuous Galerkin Approximations of Elliptic Problems, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 42 (2008) no. 3, p. 443 | DOI:10.1051/m2an:2008012
  • Kanschat, Guido Robust smoothers for high-order discontinuous Galerkin discretizations of advection–diffusion problems, Journal of Computational and Applied Mathematics, Volume 218 (2008) no. 1, p. 53 | DOI:10.1016/j.cam.2007.04.032
  • Simoncini, Valeria; Szyld, Daniel B. New conditions for non-stagnation of minimal residual methods, Numerische Mathematik, Volume 109 (2008) no. 3, p. 477 | DOI:10.1007/s00211-008-0145-y
  • Girault, Vivette; Wheeler, Mary F. Discontinuous Galerkin Methods, Partial Differential Equations, Volume 16 (2008), p. 3 | DOI:10.1007/978-1-4020-8758-5_1

Cité par 60 documents. Sources : Crossref