We construct finite volume schemes, on unstructured and irregular grids and in any space dimension, for non-linear elliptic equations of the
Mots-clés : finite volume schemes, irregular grids, non-linear elliptic equations, Leray-Lions operators
@article{M2AN_2006__40_6_1069_0, author = {Droniou, J\'er\^ome}, title = {Finite volume schemes for fully non-linear elliptic equations in divergence form}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1069--1100}, publisher = {EDP-Sciences}, volume = {40}, number = {6}, year = {2006}, doi = {10.1051/m2an:2007001}, mrnumber = {2297105}, zbl = {1117.65154}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2007001/} }
TY - JOUR AU - Droniou, Jérôme TI - Finite volume schemes for fully non-linear elliptic equations in divergence form JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 1069 EP - 1100 VL - 40 IS - 6 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007001/ DO - 10.1051/m2an:2007001 LA - en ID - M2AN_2006__40_6_1069_0 ER -
%0 Journal Article %A Droniou, Jérôme %T Finite volume schemes for fully non-linear elliptic equations in divergence form %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 1069-1100 %V 40 %N 6 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007001/ %R 10.1051/m2an:2007001 %G en %F M2AN_2006__40_6_1069_0
Droniou, Jérôme. Finite volume schemes for fully non-linear elliptic equations in divergence form. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 6, pp. 1069-1100. doi : 10.1051/m2an:2007001. https://www.numdam.org/articles/10.1051/m2an:2007001/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Part I and Part II. Comm. Pure. Appl. Math. 12 (1959) 623-727 and 17 (1964) 35-92. | Zbl
, and ,
[2] Finite-volume schemes for the
[3] Besov regularity and new error estimates for finite volume approximation of the
[4] Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general
[5] A remark on the regularity of the solutions of the
[6] Unicité de la solution de certaines équations elliptiques non linéaires. C.R. Acad. Sci. Paris 315 (1992) 1159-1164. | Zbl
, and ,[7] Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media, submitted. Available at http://hal.ccsd.cnrs.fr/ccsd-00022910.
and ,[8] Finite element error estimates for non-linear elliptic equations of monotone type. Numer. Math. 54 (1989) 373-393. | Zbl
,[9] Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | Zbl
, and ,[10] Nonlinear functional analysis. Springer (1985). | MR | Zbl
,[11] On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25 (1994) 1085-1111. | Zbl
and ,[12] A mixed finite volume scheme for anisotropic diffusion problems on any grid. Num. Math. 105 (2006) 35-71. | Zbl
and ,[13] Study of the mixed finite volume method for Stokes and Navier-Stokes equations, submitted. Available at http://hal.archives-ouvertes.fr/hal-00110911.
and ,
[14] Finite volume methods for convection-diffusion equations with right-hand side in
[15] Finite Volume Methods, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. VII, 713-1020 (North Holland). | Zbl
, and ,[16] Finite element solution of nonlinear elliptic problems. Numer. Math. 50 (1987) 451-475. | Zbl
and ,[17] Compactness method in the finite element theory of nonlinear elliptic problems. Numer. Math. 52 (1988) 147-163. | Zbl
and ,[18] Finite element approximation of nonlinear elliptic problems with discontinuous coefficients. RAIRO Modél. Math. Anal. Numér. 24 (1990) 457-500. | Numdam | Zbl
and ,[19] Comparison between finite volume finite element methods for the numerical simulation of an elliptic problem arising in electrochemical engineering. Comput. Meth. Appl. Mech. Engin. 115 (1994) 315-338.
and ,[20] Numerical methods for nonlinear variational problems. Springer (1984). | Zbl
,[21] Approximation of a nonlinear elliptic problem arising in a non-newtonian fluid flow model in glaciology. ESAIM: M2AN 37 (2003) 175-186. | Numdam | Zbl
and ,[22] Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder. Bull. Soc. Math. France 93 (1965) 97-107. | Numdam | Zbl
and ,[23] Singular Integrals and Differentiability Properties of Functions. Princetown University Press (1970). | MR | Zbl
,[24] The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58 (1990) 51-77. | Zbl
,Cité par Sources :