Relaxation models of phase transition flows
ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 2, pp. 331-352.

In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid.

DOI : 10.1051/m2an:2006015
Classification : 76M12, 65M12
Mots-clés : finite volume, entropy optimization, relaxation, phase transition, reactive flows, critical point
Helluy, Philippe  ; Seguin, Nicolas 1

1 Laboratoire J.-L. Lions, Université Paris VI, France.
@article{M2AN_2006__40_2_331_0,
     author = {Helluy, Philippe and Seguin, Nicolas},
     title = {Relaxation models of phase transition flows},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {331--352},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {2},
     year = {2006},
     doi = {10.1051/m2an:2006015},
     mrnumber = {2241826},
     zbl = {1108.76078},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an:2006015/}
}
TY  - JOUR
AU  - Helluy, Philippe
AU  - Seguin, Nicolas
TI  - Relaxation models of phase transition flows
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2006
SP  - 331
EP  - 352
VL  - 40
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an:2006015/
DO  - 10.1051/m2an:2006015
LA  - en
ID  - M2AN_2006__40_2_331_0
ER  - 
%0 Journal Article
%A Helluy, Philippe
%A Seguin, Nicolas
%T Relaxation models of phase transition flows
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2006
%P 331-352
%V 40
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an:2006015/
%R 10.1051/m2an:2006015
%G en
%F M2AN_2006__40_2_331_0
Helluy, Philippe; Seguin, Nicolas. Relaxation models of phase transition flows. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 2, pp. 331-352. doi : 10.1051/m2an:2006015. https://www.numdam.org/articles/10.1051/m2an:2006015/

[1] G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577-616.

[2] T. Barberon and P. Helluy, Finite volume simulations of cavitating flows. In Finite volumes for complex applications, III (Porquerolles, 2002), Lab. Anal. Topol. Probab. CNRS, Marseille (2002) 441-448 (electronic).

[3] T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832-858. | Zbl

[4] T. Barberon, P. Helluy and S. Rouy, Practical computation of axisymmetrical multifluid flows. Int. J. on Finite Volumes 1 (2003) 1-34. http://averoes.math.univ-paris13.fr/IJFV

[5] F. Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws. J. Hyper. Diff. Eqns 1 (2004) 149-170. | Zbl

[6] Y. Brenier, Averaged multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal. 21 (1984) 1013-1037. | Zbl

[7] Y. Brenier, Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes. C.R. Acad. Sci. Paris Sér. I Math. 308 (1989) 587-589. | Zbl

[8] H.B. Callen, Thermodynamics and an introduction to thermostatistics, second edition. Wiley and Sons (1985). | Zbl

[9] F. Caro, Modélisation et simulation numérique des transitions de phase liquide-vapeur. Ph.D. thesis, École Polytechnique, Paris, France (November 2004).

[10] G. Chanteperdrix, P. Villedieu, J.-P. Vila, A compressible model for separated two-phase flows computations. In ASME Fluids Engineering Division Summer Meeting. ASME, Montreal, Canada (July 2002).

[11] G.Q. Chen, C. David Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47 (1994) 787-830. | Zbl

[12] J.-P. Croisille, Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces. Ph.D. thesis, Université Paris VI, France (1991).

[13] S. Dellacherie, Relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909-936. | Numdam | Zbl

[14] L.C. Evans, Entropy and partial differential equations | MR

[15] A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35-61. | Zbl

[16] B.T. Hayes and P.G. Lefloch, Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM J. Math. Anal. 31 (2000) 941-991 (electronic). | Zbl

[17] J.-B. Hiriart-Urruty, Optimisation et analyse convexe. Mathématiques, Presses Universitaires de France, Paris (1998). | MR | Zbl

[18] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions, Springer-Verlag, Berlin (2001). | MR | Zbl

[19] S. Jaouen, Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris VI (November 2001).

[20] L. Landau and E. Lifchitz, Physique statistique. Physique théorique, Ellipses, Paris (1994).

[21] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, in CBMS Regional Conf. Ser. In Appl. Math. 11, Philadelphia, SIAM (1972). | MR | Zbl

[22] P.G. Lefloch and C. Rohde, High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37 (2000) 2023-2060. | Zbl

[23] R.J. Leveque and M. Pelanti, A class of approximate Riemann solvers and their relation to relaxation schemes. J. Comput. Phys. 172 (2001) 572-591. | Zbl

[24] T.P. Liu, The Riemann problem for general systems of conservation laws. J. Differ. Equations 56 (1975) 218-234. | Zbl

[25] Y. Lucet, A fast computational algorithm for the Legendre-Fenchel transform. Comput. Optim. Appl. 6 (1996) 27-57. | Zbl

[26] Y. Lucet, Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Algorithms 16 (1998) 171-185. | Zbl

[27] P.-A. Mazet and F. Bourdel, Multidimensional case of an entropic variational formulation of conservative hyperbolic systems. Rech. Aérospatiale 5 (1984) 369-378. | Zbl

[28] R. Menikoff and B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1989) 75-130. | Zbl

[29] B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27 (1990) 1405-1421. | Zbl

[30] R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425-467. | Zbl

  • Mathis, H. Derivation of a two‐phase flow model accounting for surface tension, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 105 (2025) no. 1 | DOI:10.1002/zamm.202301019
  • Bussac, J.; Mathis, H. Simulation of a homogeneous relaxation model for a three-phase mixture with miscible phases, Computers Mathematics with Applications, Volume 143 (2023), p. 327 | DOI:10.1016/j.camwa.2023.05.012
  • Abgrall, Rémi; Rai, Pratik; Renac, Florent A discontinuous Galerkin spectral element method for a nonconservative compressible multicomponent flow model, Journal of Computational Physics, Volume 472 (2023), p. 111693 | DOI:10.1016/j.jcp.2022.111693
  • Hurisse, Olivier; Quibel, Lucie Simulations of water-vapor two-phase flows with non-condensable gas using a Noble-Able-Chemkin stiffened gas equation of state, Computers Fluids, Volume 239 (2022), p. 105399 | DOI:10.1016/j.compfluid.2022.105399
  • Abgrall, Rémi; Rai, Pratik; Renac, Florent A Discontinuous Galerkin Spectral Element Method for a Nonconservative Compressible Multicomponent Flow Model, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4110903
  • Hérard, Jean-Marc; Hurisse, Olivier; Quibel, Lucie A four-field three-phase flow model with both miscible and immiscible components, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021), p. S251 | DOI:10.1051/m2an/2020037
  • Faccanoni, Gloria; Grec, Bérénice; Penel, Yohan A homogeneous relaxation low mach number model, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 4, p. 1569 | DOI:10.1051/m2an/2021032
  • Godlewski, Edwige; Raviart, Pierre-Arnaud Introduction, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 1 | DOI:10.1007/978-1-0716-1344-3_1
  • Godlewski, Edwige; Raviart, Pierre-Arnaud Finite Volume Schemes for One-Dimensional Systems, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 215 | DOI:10.1007/978-1-0716-1344-3_4
  • Godlewski, Edwige; Raviart, Pierre-Arnaud Source Terms, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 627 | DOI:10.1007/978-1-0716-1344-3_7
  • Gouin, Camille; Junqueira-Junior, Carlos; Goncalves Da Silva, Eric; Robinet, Jean-Christophe Numerical investigation of three-dimensional partial cavitation in a Venturi geometry, Physics of Fluids, Volume 33 (2021) no. 6 | DOI:10.1063/5.0052913
  • Helluy, Philippe; Hurisse, Olivier; Quibel, Lucie Assessment of numerical schemes for complex two-phase flows with real equations of state, Computers Fluids, Volume 196 (2020), p. 104347 | DOI:10.1016/j.compfluid.2019.104347
  • Chen, Ying; Gong, Zhaoxin; Li, Jie; Chen, Xin; Lu, Chuanjing Numerical Investigation on the Regime of Cavitation Shedding and Collapse During the Water-Exit of Submerged Projectile, Journal of Fluids Engineering, Volume 142 (2020) no. 1 | DOI:10.1115/1.4044831
  • Dellacherie, Stéphane; Faccanoni, Gloria; Grec, Bérénice; Penel, Yohan Accurate steam-water equation of state for two-phase flow LMNC model with phase transition, Applied Mathematical Modelling, Volume 65 (2019), p. 207 | DOI:10.1016/j.apm.2018.07.028
  • Mathis, Hélène A thermodynamically consistent model of a liquid-vapor fluid with a gas, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 1, p. 63 | DOI:10.1051/m2an/2018044
  • Boukili, Hamza; Hérard, Jean-Marc Relaxation and simulation of a barotropic three-phase flow model, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 3, p. 1031 | DOI:10.1051/m2an/2019001
  • Chen, Ying; Li, Jie; Gong, Zhaoxin; Chen, Xin; Lu, Chuanjing Large eddy simulation and investigation on the laminar-turbulent transition and turbulence-cavitation interaction in the cavitating flow around hydrofoil, International Journal of Multiphase Flow, Volume 112 (2019), p. 300 | DOI:10.1016/j.ijmultiphaseflow.2018.10.012
  • Seguin, Nicolas Compressible Heterogeneous Two-Phase Flows, Theory, Numerics and Applications of Hyperbolic Problems II, Volume 237 (2018), p. 577 | DOI:10.1007/978-3-319-91548-7_43
  • Rohde, Christian; Zeiler, Christoph On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 3 | DOI:10.1007/s00033-018-0958-1
  • Chen, Ying; Chen, Xin; Li, Jie; Gong, Zhaoxin; Lu, Chuanjing Large Eddy Simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil, Ocean Engineering, Volume 129 (2017), p. 1 | DOI:10.1016/j.oceaneng.2016.11.012
  • Morin, Alexandre; Flåtten, Tore A two-fluid four-equation model with instantaneous thermodynamical equilibrium, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 4, p. 1167 | DOI:10.1051/m2an/2015074
  • Solem, Susanne; Aursand, Peder; Flåtten, Tore The dispersive wave dynamics of a two-phase flow relaxation model, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 2, p. 601 | DOI:10.1051/m2an/2014048
  • Charrière, Boris; Decaix, Jean; Goncalvès, Eric A comparative study of cavitation models in a Venturi flow, European Journal of Mechanics - B/Fluids, Volume 49 (2015), p. 287 | DOI:10.1016/j.euromechflu.2014.10.003
  • Linga, Gaute; Aursand, Peder; Flåtten, Tore Two-phase nozzle flow and the subcharacteristic condition, Journal of Mathematical Analysis and Applications, Volume 426 (2015) no. 2, p. 917 | DOI:10.1016/j.jmaa.2015.01.065
  • Mathis, Hélène; Cancès, Clément; Godlewski, Edwige; Seguin, Nicolas Dynamic Model Adaptation for Multiscale Simulation of Hyperbolic Systems with Relaxation, Journal of Scientific Computing, Volume 63 (2015) no. 3, p. 820 | DOI:10.1007/s10915-014-9915-0
  • Hejranfar, Kazem; Ezzatneshan, Eslam; Fattah-Hesari, Kasra A comparative study of two cavitation modeling strategies for simulation of inviscid cavitating flows, Ocean Engineering, Volume 108 (2015), p. 257 | DOI:10.1016/j.oceaneng.2015.07.016
  • Helluy, Philippe; Jung, Jonathan Interpolated Pressure Laws in Two-Fluid Simulations and Hyperbolicity, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Volume 77 (2014), p. 37 | DOI:10.1007/978-3-319-05684-5_3
  • Goncalvès, Eric; Charrière, Boris Modelling for isothermal cavitation with a four-equation model, International Journal of Multiphase Flow, Volume 59 (2014), p. 54 | DOI:10.1016/j.ijmultiphaseflow.2013.10.015
  • Goncalvès, Eric Numerical study of expansion tube problems: Toward the simulation of cavitation, Computers Fluids, Volume 72 (2013), p. 1 | DOI:10.1016/j.compfluid.2012.11.019
  • Grenier, N.; Vila, J.-P.; Villedieu, P. An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows, Journal of Computational Physics, Volume 252 (2013), p. 1 | DOI:10.1016/j.jcp.2013.06.008
  • Faccanoni, Gloria; Kokh, Samuel; Allaire, Grégoire Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 5, p. 1029 | DOI:10.1051/m2an/2011069
  • HELLUY, P.; MATHIS, H. PRESSURE LAWS AND FAST LEGENDRE TRANSFORM, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 04, p. 745 | DOI:10.1142/s0218202511005209
  • Faccanoni, Gloria; Kokh, Samuel; Allaire, Grégoire Approximation of liquid–vapor phase transition for compressible fluids with tabulated EOS, Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, p. 473 | DOI:10.1016/j.crma.2010.01.012
  • Goncalvès, Eric; Patella, Regiane Fortes Numerical study of cavitating flows with thermodynamic effect, Computers Fluids, Volume 39 (2010) no. 1, p. 99 | DOI:10.1016/j.compfluid.2009.07.009
  • Lucet, Yves What Shape Is Your Conjugate? A Survey of Computational Convex Analysis and Its Applications, SIAM Review, Volume 52 (2010) no. 3, p. 505 | DOI:10.1137/100788458
  • Lucet, Yves What Shape Is Your Conjugate? A Survey of Computational Convex Analysis and Its Applications, SIAM Journal on Optimization, Volume 20 (2009) no. 1, p. 216 | DOI:10.1137/080719613
  • Allaire, Grégoire; Faccanoni, Gloria; Kokh, Samuel A strictly hyperbolic equilibrium phase transition model, Comptes Rendus. Mathématique, Volume 344 (2006) no. 2, p. 135 | DOI:10.1016/j.crma.2006.11.008

Cité par 37 documents. Sources : Crossref