In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid.
Mots-clés : finite volume, entropy optimization, relaxation, phase transition, reactive flows, critical point
@article{M2AN_2006__40_2_331_0, author = {Helluy, Philippe and Seguin, Nicolas}, title = {Relaxation models of phase transition flows}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {331--352}, publisher = {EDP-Sciences}, volume = {40}, number = {2}, year = {2006}, doi = {10.1051/m2an:2006015}, mrnumber = {2241826}, zbl = {1108.76078}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2006015/} }
TY - JOUR AU - Helluy, Philippe AU - Seguin, Nicolas TI - Relaxation models of phase transition flows JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 331 EP - 352 VL - 40 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2006015/ DO - 10.1051/m2an:2006015 LA - en ID - M2AN_2006__40_2_331_0 ER -
%0 Journal Article %A Helluy, Philippe %A Seguin, Nicolas %T Relaxation models of phase transition flows %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 331-352 %V 40 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2006015/ %R 10.1051/m2an:2006015 %G en %F M2AN_2006__40_2_331_0
Helluy, Philippe; Seguin, Nicolas. Relaxation models of phase transition flows. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 2, pp. 331-352. doi : 10.1051/m2an:2006015. https://www.numdam.org/articles/10.1051/m2an:2006015/
[1] A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577-616.
, and ,[2] Finite volume simulations of cavitating flows. In Finite volumes for complex applications, III (Porquerolles, 2002), Lab. Anal. Topol. Probab. CNRS, Marseille (2002) 441-448 (electronic).
and ,[3] Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832-858. | Zbl
and ,[4] Practical computation of axisymmetrical multifluid flows. Int. J. on Finite Volumes 1 (2003) 1-34. http://averoes.math.univ-paris13.fr/IJFV
, and ,[5] A reduced stability condition for nonlinear relaxation to conservation laws. J. Hyper. Diff. Eqns 1 (2004) 149-170. | Zbl
,[6] Averaged multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal. 21 (1984) 1013-1037. | Zbl
,[7] Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes. C.R. Acad. Sci. Paris Sér. I Math. 308 (1989) 587-589. | Zbl
,[8] Thermodynamics and an introduction to thermostatistics, second edition. Wiley and Sons (1985). | Zbl
,[9] Modélisation et simulation numérique des transitions de phase liquide-vapeur. Ph.D. thesis, École Polytechnique, Paris, France (November 2004).
,[10] A compressible model for separated two-phase flows computations. In ASME Fluids Engineering Division Summer Meeting. ASME, Montreal, Canada (July 2002).
, , ,[11] Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47 (1994) 787-830. | Zbl
, and ,[12] Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces. Ph.D. thesis, Université Paris VI, France (1991).
,[13] Relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909-936. | Numdam | Zbl
,[14] Entropy and partial differential equations | MR
,[15] On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35-61. | Zbl
, and ,[16] Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM J. Math. Anal. 31 (2000) 941-991 (electronic). | Zbl
and ,[17] Optimisation et analyse convexe. Mathématiques, Presses Universitaires de France, Paris (1998). | MR | Zbl
,[18] Fundamentals of convex analysis. Grundlehren Text Editions, Springer-Verlag, Berlin (2001). | MR | Zbl
and ,[19] Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris VI (November 2001).
,[20] Physique statistique. Physique théorique, Ellipses, Paris (1994).
and ,[21] Hyperbolic systems of conservation laws and the mathematical theory of shock waves, in CBMS Regional Conf. Ser. In Appl. Math. 11, Philadelphia, SIAM (1972). | MR | Zbl
,[22] High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37 (2000) 2023-2060. | Zbl
and ,[23] A class of approximate Riemann solvers and their relation to relaxation schemes. J. Comput. Phys. 172 (2001) 572-591. | Zbl
and ,[24] The Riemann problem for general systems of conservation laws. J. Differ. Equations 56 (1975) 218-234. | Zbl
,[25] A fast computational algorithm for the Legendre-Fenchel transform. Comput. Optim. Appl. 6 (1996) 27-57. | Zbl
,[26] Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Algorithms 16 (1998) 171-185. | Zbl
,[27] Multidimensional case of an entropic variational formulation of conservative hyperbolic systems. Rech. Aérospatiale 5 (1984) 369-378. | Zbl
and ,[28] The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1989) 75-130. | Zbl
and ,[29] Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27 (1990) 1405-1421. | Zbl
,[30] A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425-467. | Zbl
and ,- Derivation of a two‐phase flow model accounting for surface tension, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 105 (2025) no. 1 | DOI:10.1002/zamm.202301019
- Simulation of a homogeneous relaxation model for a three-phase mixture with miscible phases, Computers Mathematics with Applications, Volume 143 (2023), p. 327 | DOI:10.1016/j.camwa.2023.05.012
- A discontinuous Galerkin spectral element method for a nonconservative compressible multicomponent flow model, Journal of Computational Physics, Volume 472 (2023), p. 111693 | DOI:10.1016/j.jcp.2022.111693
- Simulations of water-vapor two-phase flows with non-condensable gas using a Noble-Able-Chemkin stiffened gas equation of state, Computers Fluids, Volume 239 (2022), p. 105399 | DOI:10.1016/j.compfluid.2022.105399
- A Discontinuous Galerkin Spectral Element Method for a Nonconservative Compressible Multicomponent Flow Model, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4110903
- A four-field three-phase flow model with both miscible and immiscible components, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021), p. S251 | DOI:10.1051/m2an/2020037
- A homogeneous relaxation low mach number model, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 4, p. 1569 | DOI:10.1051/m2an/2021032
- Introduction, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 1 | DOI:10.1007/978-1-0716-1344-3_1
- Finite Volume Schemes for One-Dimensional Systems, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 215 | DOI:10.1007/978-1-0716-1344-3_4
- Source Terms, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 627 | DOI:10.1007/978-1-0716-1344-3_7
- Numerical investigation of three-dimensional partial cavitation in a Venturi geometry, Physics of Fluids, Volume 33 (2021) no. 6 | DOI:10.1063/5.0052913
- Assessment of numerical schemes for complex two-phase flows with real equations of state, Computers Fluids, Volume 196 (2020), p. 104347 | DOI:10.1016/j.compfluid.2019.104347
- Numerical Investigation on the Regime of Cavitation Shedding and Collapse During the Water-Exit of Submerged Projectile, Journal of Fluids Engineering, Volume 142 (2020) no. 1 | DOI:10.1115/1.4044831
- Accurate steam-water equation of state for two-phase flow LMNC model with phase transition, Applied Mathematical Modelling, Volume 65 (2019), p. 207 | DOI:10.1016/j.apm.2018.07.028
- A thermodynamically consistent model of a liquid-vapor fluid with a gas, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 1, p. 63 | DOI:10.1051/m2an/2018044
- Relaxation and simulation of a barotropic three-phase flow model, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 3, p. 1031 | DOI:10.1051/m2an/2019001
- Large eddy simulation and investigation on the laminar-turbulent transition and turbulence-cavitation interaction in the cavitating flow around hydrofoil, International Journal of Multiphase Flow, Volume 112 (2019), p. 300 | DOI:10.1016/j.ijmultiphaseflow.2018.10.012
- Compressible Heterogeneous Two-Phase Flows, Theory, Numerics and Applications of Hyperbolic Problems II, Volume 237 (2018), p. 577 | DOI:10.1007/978-3-319-91548-7_43
- On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 3 | DOI:10.1007/s00033-018-0958-1
- Large Eddy Simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil, Ocean Engineering, Volume 129 (2017), p. 1 | DOI:10.1016/j.oceaneng.2016.11.012
- A two-fluid four-equation model with instantaneous thermodynamical equilibrium, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 4, p. 1167 | DOI:10.1051/m2an/2015074
- The dispersive wave dynamics of a two-phase flow relaxation model, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 2, p. 601 | DOI:10.1051/m2an/2014048
- A comparative study of cavitation models in a Venturi flow, European Journal of Mechanics - B/Fluids, Volume 49 (2015), p. 287 | DOI:10.1016/j.euromechflu.2014.10.003
- Two-phase nozzle flow and the subcharacteristic condition, Journal of Mathematical Analysis and Applications, Volume 426 (2015) no. 2, p. 917 | DOI:10.1016/j.jmaa.2015.01.065
- Dynamic Model Adaptation for Multiscale Simulation of Hyperbolic Systems with Relaxation, Journal of Scientific Computing, Volume 63 (2015) no. 3, p. 820 | DOI:10.1007/s10915-014-9915-0
- A comparative study of two cavitation modeling strategies for simulation of inviscid cavitating flows, Ocean Engineering, Volume 108 (2015), p. 257 | DOI:10.1016/j.oceaneng.2015.07.016
- Interpolated Pressure Laws in Two-Fluid Simulations and Hyperbolicity, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Volume 77 (2014), p. 37 | DOI:10.1007/978-3-319-05684-5_3
- Modelling for isothermal cavitation with a four-equation model, International Journal of Multiphase Flow, Volume 59 (2014), p. 54 | DOI:10.1016/j.ijmultiphaseflow.2013.10.015
- Numerical study of expansion tube problems: Toward the simulation of cavitation, Computers Fluids, Volume 72 (2013), p. 1 | DOI:10.1016/j.compfluid.2012.11.019
- An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows, Journal of Computational Physics, Volume 252 (2013), p. 1 | DOI:10.1016/j.jcp.2013.06.008
- Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 5, p. 1029 | DOI:10.1051/m2an/2011069
- PRESSURE LAWS AND FAST LEGENDRE TRANSFORM, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 04, p. 745 | DOI:10.1142/s0218202511005209
- Approximation of liquid–vapor phase transition for compressible fluids with tabulated EOS, Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, p. 473 | DOI:10.1016/j.crma.2010.01.012
- Numerical study of cavitating flows with thermodynamic effect, Computers Fluids, Volume 39 (2010) no. 1, p. 99 | DOI:10.1016/j.compfluid.2009.07.009
- What Shape Is Your Conjugate? A Survey of Computational Convex Analysis and Its Applications, SIAM Review, Volume 52 (2010) no. 3, p. 505 | DOI:10.1137/100788458
- What Shape Is Your Conjugate? A Survey of Computational Convex Analysis and Its Applications, SIAM Journal on Optimization, Volume 20 (2009) no. 1, p. 216 | DOI:10.1137/080719613
- A strictly hyperbolic equilibrium phase transition model, Comptes Rendus. Mathématique, Volume 344 (2006) no. 2, p. 135 | DOI:10.1016/j.crma.2006.11.008
Cité par 37 documents. Sources : Crossref