We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave
Mots-clés : Jacobi-Anger, fast multipole method, truncation error
@article{M2AN_2004__38_2_371_0, author = {Carayol, Quentin and Collino, Francis}, title = {Error estimates in the fast multipole method for scattering problems. {Part} 1 : truncation of the {Jacobi-Anger} series}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {371--394}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/m2an:2004017}, mrnumber = {2069152}, zbl = {1077.41027}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2004017/} }
TY - JOUR AU - Carayol, Quentin AU - Collino, Francis TI - Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 371 EP - 394 VL - 38 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004017/ DO - 10.1051/m2an:2004017 LA - en ID - M2AN_2004__38_2_371_0 ER -
%0 Journal Article %A Carayol, Quentin %A Collino, Francis %T Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 371-394 %V 38 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004017/ %R 10.1051/m2an:2004017 %G en %F M2AN_2004__38_2_371_0
Carayol, Quentin; Collino, Francis. Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 371-394. doi : 10.1051/m2an:2004017. https://www.numdam.org/articles/10.1051/m2an:2004017/
[1] Handbook of Mathematical Functions. Dover, New York (1964).
and ,[2] Analysis of the truncation errors in the fast multipole method for scattering problems. J. Comput. Appl. Math. 115 (2000) 23-33. | Zbl
and ,[3] Développement et analyse d'une méthode multipôle multiniveau pour l'électromagnétisme. Ph.D. Thesis, Université Paris VI Pierre et Marie Curie, Paris (2002).
,[4] Application of an ultra weak variational formulation of elliptic pdes to the 2D Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255-299. | Zbl
and ,[5] Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001).
, , and ,[6] The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (1993) 7-12.
, and ,[7] Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag 93 (1992). | MR | Zbl
and ,
[8] On the Lambert
[9] The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98-128 (electronic). | Zbl
,[10] The fast multipole method: Numerical implementation. J. Comput. Phys. 160 (2000) 196-240. | Zbl
,[11] Efficient fast multipole method for low frequency scattering. J. Comput. Phys. (to appear). | MR | Zbl
and ,[12] Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16 (1995) 865-897. | Zbl
and ,[13] Table of integrals, series, and products, 5th edn., Academic Press (1994). | MR | Zbl
and ,[14] Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J. Numer. Anal. 36 (1999) 906-921 (electronic). | Zbl
, and ,[15] Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials. Applicable Anal. 14 (1982/83) 237-240. | Zbl
,[16] Corrigendum: “Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials” [Appl. Anal. 14 (1982/83) 237-240; MR 84k:26017]. Appl. Anal. 50 (1993) 47. | Zbl
,[17] Acoustic and Electromagnetic Equation. Integral Representation for Harmonic Problems. Springer-Verlag 144 (2001). | MR | Zbl
,[18] Numerical accuracy of multipole expansion for 2-d mlfma. IEEE Trans. Antennas Propagat. 51 (2003) 1883-1890.
and ,[19] Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT 36 (1996) 333-358. | Zbl
,[20] Bessel functions and Kapteyn series. Proc. London Math. Soc. (1916) 150-174. | JFM
,[21] A treatise on the theory of Bessel functions. Cambridge University Press (1966). | JFM | MR | Zbl
,Cité par Sources :