A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
Mots-clés : higher order parabolic PDE, positivity, semidiscretization, stability, convergence, semiconductors
@article{M2AN_2003__37_2_277_0, author = {J\"ungel, Ansgar and Pinnau, Ren\'e}, title = {Convergent semidiscretization of a nonlinear fourth order parabolic system}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {277--289}, publisher = {EDP-Sciences}, volume = {37}, number = {2}, year = {2003}, doi = {10.1051/m2an:2003026}, mrnumber = {1991201}, zbl = {1026.35045}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2003026/} }
TY - JOUR AU - Jüngel, Ansgar AU - Pinnau, René TI - Convergent semidiscretization of a nonlinear fourth order parabolic system JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 277 EP - 289 VL - 37 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003026/ DO - 10.1051/m2an:2003026 LA - en ID - M2AN_2003__37_2_277_0 ER -
%0 Journal Article %A Jüngel, Ansgar %A Pinnau, René %T Convergent semidiscretization of a nonlinear fourth order parabolic system %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 277-289 %V 37 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003026/ %R 10.1051/m2an:2003026 %G en %F M2AN_2003__37_2_277_0
Jüngel, Ansgar; Pinnau, René. Convergent semidiscretization of a nonlinear fourth order parabolic system. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 277-289. doi : 10.1051/m2an:2003026. https://www.numdam.org/articles/10.1051/m2an:2003026/
[1] Sobolev Spaces. First edition, Academic Press, New York (1975). | MR | Zbl
,[2] Diffusion-drift modelling of strong inversion layers. COMPEL 6 (1987) 11-18.
,[3] Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80 (1998) 525-556. | Zbl
, and ,[4] On the stationary quantum drift diffusion model. Z. Angew. Math. Phys. 49 (1998) 251-275. | Zbl
and ,[5] Higher order nonlinear degenerate parabolic equations. J. Differential Equations 83 (1990) 179-206. | Zbl
and ,[6] The mathematics of moving contact lines in thin liquid films. Notices Amer. Math. Soc. 45 (1998) 689-697. | Zbl
,[7] Long-wave instabilities and saturation in thin film equations. Comm. Pure Appl. Math. 51 (1998) 625-661. | Zbl
and ,[8] Positivity preserving numerical schemes for lubriaction-typeequations. SIAM J. Numer. Anal. 37 (2000) 523-555. | Zbl
and ,[9] Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations. Comm. Pure Appl. Math. 47 (1994) 923-942. | Zbl
, and ,[10] Modular alorithms for transient semiconductor device simulation, part I: Analysis of the outer iteration, in Computational Aspects of VLSI Design with an Emphasis on Semiconductor Device Simulations, R.E. Bank Ed. (1990) 107-149. | Zbl
and ,[11] On a fourth-order degenerate parabolic equation: Global entropy estimates, existence and quantitative behavior of solutions. SIAM J. Math. Anal. 29 (1998) 321-342. | Zbl
, and ,[12] The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (1994) 409-427. | Zbl
,[13] Approximation of thermal equilibrium for quantum gases with discontinuous potentials and applications to semiconductor devices. SIAM J. Appl. Math. 58 (1998) 780-805. | Zbl
and ,[14] The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z. Angew. Math. Phys. 48 (1997) 45-59. | Zbl
and ,[15] Quantum hydrodynamics, Wigner transform and the classical limit. Asymptot. Anal. 14 (1997) 97-116. | Zbl
and ,[16] Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87 (2000) 113-152. | Zbl
and ,[17] A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Differential Equations 5 (2000) 773-800.
and ,[18] Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, PNLDE 41 (2001). | MR | Zbl
,[19] Global non-negative solutions of a nonlinear fourth order parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000) 760-777. | Zbl
and ,[20] A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system. SIAM J. Numer. Anal. 39 (2001) 385-406. | Zbl
and ,[21] Semiconductor Equations. First edition, Springer-Verlag, Wien (1990). | Zbl
, and ,[22] A variational analysis of the thermal equilibrium state of charged quantum fluids. Comm. Partial Differential Equations 20 (1995) 885-900. | Zbl
and ,[23] Weak limits of the quantum hydrodynamic model. To appear in Proc. International Workshop on Quantum Kinetic Theory.
and ,[24] A note on boundary conditions for quantum hydrodynamic models. Appl. Math. Lett. 12 (1999) 77-82. | Zbl
,[25] The linearized transient quantum drift diffusion model - stability of stationary states. ZAMM 80 (2000) 327-344. | Zbl
,[26] Numerical study of the Quantum Euler-Poisson model. To appear in Appl. Math. Lett. | Zbl
,[27] The stationary current-voltage characteristics of the quantum drift diffusion model. SIAM J. Numer. Anal. 37 (1999) 211-245. | Zbl
and ,
[28] Compact sets in the space
[29] Elliptic Differential Equations and Obstacle Problems. First edition, Plenum Press, New York (1987). | MR | Zbl
,- Stationary solution for transient quantum hydrodynamics with bohmenian-type boundary conditions, Computational and Applied Mathematics, Volume 36 (2017) no. 1, p. 459 | DOI:10.1007/s40314-015-0235-2
- Existence of global attractor for the one-dimensional bipolar quantum drift-diffusion model, Wuhan University Journal of Natural Sciences, Volume 22 (2017) no. 4, p. 277 | DOI:10.1007/s11859-017-1247-0
- Entropy dissipative one‐leg multistep time approximations of nonlinear diffusive equations, Numerical Methods for Partial Differential Equations, Volume 31 (2015) no. 4, p. 1119 | DOI:10.1002/num.21938
- Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation, Numerische Mathematik, Volume 127 (2014) no. 2, p. 365 | DOI:10.1007/s00211-013-0588-7
- Boundary layer analysis in the semiclassical limit of a quantum drift–diffusion model, Journal of Differential Equations, Volume 253 (2012) no. 1, p. 356 | DOI:10.1016/j.jde.2012.03.008
- A sixth-order parabolic system in semiconductors, Chinese Annals of Mathematics, Series B, Volume 32 (2011) no. 2, p. 265 | DOI:10.1007/s11401-011-0632-9
- Viscous quantum hydrodynamics and parameter-elliptic systems, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 5, p. 520 | DOI:10.1002/mma.1377
- Quantum Semiconductor Models, Partial Differential Equations and Spectral Theory (2011), p. 1 | DOI:10.1007/978-3-0348-0024-2_1
- Semiclassical limit for bipolar quantum drift-diffusion model, Acta Mathematica Scientia, Volume 29 (2009) no. 2, p. 285 | DOI:10.1016/s0252-9602(09)60029-1
- The semiclassical limit in the quantum drift-diffusion model, Acta Mathematica Sinica, English Series, Volume 25 (2009) no. 2, p. 253 | DOI:10.1007/s10114-008-7098-z
- The bipolar quantum drift-diffusion model, Acta Mathematica Sinica, English Series, Volume 25 (2009) no. 4, p. 617 | DOI:10.1007/s10114-009-7171-2
- Weak solutions to the stationary quantum drift-diffusion model, Journal of Mathematical Analysis and Applications, Volume 359 (2009) no. 2, p. 666 | DOI:10.1016/j.jmaa.2009.06.030
- Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-diffusion model, Nonlinear Analysis: Real World Applications, Volume 10 (2009) no. 3, p. 1321 | DOI:10.1016/j.nonrwa.2008.01.008
- The Multidimensional Bipolar Quantum Drift-diffusion Model, Advanced Nonlinear Studies, Volume 8 (2008) no. 4, p. 799 | DOI:10.1515/ans-2008-0409
- The semiclassical limit in the quantum drift-diffusion equations with isentropic pressure, Chinese Annals of Mathematics, Series B, Volume 29 (2008) no. 4, p. 369 | DOI:10.1007/s11401-007-0314-9
- Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET, Journal of Computational Electronics, Volume 7 (2008) no. 2, p. 52 | DOI:10.1007/s10825-008-0253-z
- Initial time layer problem for quantum drift-diffusion model, Journal of Mathematical Analysis and Applications, Volume 343 (2008) no. 1, p. 64 | DOI:10.1016/j.jmaa.2008.01.015
- The Dirichlet problem of the quantum drift-diffusion model, Nonlinear Analysis: Theory, Methods Applications, Volume 69 (2008) no. 9, p. 3084 | DOI:10.1016/j.na.2007.09.003
- Dirichlet-neumann problem for unipolar isentropic quantum drift-diffusion model, Tsinghua Science and Technology, Volume 13 (2008) no. 4, p. 560 | DOI:10.1016/s1007-0214(08)70089-0
- The Global Existence and Semiclassical Limit of Weak Solutions to Multidimensional Quantum Drift-diffusion Model, Advanced Nonlinear Studies, Volume 7 (2007) no. 4, p. 651 | DOI:10.1515/ans-2007-0408
- The Existence and Long-Time Behavior of Weak Solution to Bipolar Quantum Drift-Diffusion Model*, Chinese Annals of Mathematics, Series B, Volume 28 (2007) no. 6, p. 651 | DOI:10.1007/s11401-006-0568-7
Cité par 21 documents. Sources : Crossref