Convergent semidiscretization of a nonlinear fourth order parabolic system
ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 277-289.

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

DOI : 10.1051/m2an:2003026
Classification : 35K35, 65M12, 65M15, 65M20, 76Y05
Mots-clés : higher order parabolic PDE, positivity, semidiscretization, stability, convergence, semiconductors
@article{M2AN_2003__37_2_277_0,
     author = {J\"ungel, Ansgar and Pinnau, Ren\'e},
     title = {Convergent semidiscretization of a nonlinear fourth order parabolic system},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {277--289},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     doi = {10.1051/m2an:2003026},
     mrnumber = {1991201},
     zbl = {1026.35045},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an:2003026/}
}
TY  - JOUR
AU  - Jüngel, Ansgar
AU  - Pinnau, René
TI  - Convergent semidiscretization of a nonlinear fourth order parabolic system
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 277
EP  - 289
VL  - 37
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an:2003026/
DO  - 10.1051/m2an:2003026
LA  - en
ID  - M2AN_2003__37_2_277_0
ER  - 
%0 Journal Article
%A Jüngel, Ansgar
%A Pinnau, René
%T Convergent semidiscretization of a nonlinear fourth order parabolic system
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 277-289
%V 37
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an:2003026/
%R 10.1051/m2an:2003026
%G en
%F M2AN_2003__37_2_277_0
Jüngel, Ansgar; Pinnau, René. Convergent semidiscretization of a nonlinear fourth order parabolic system. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 277-289. doi : 10.1051/m2an:2003026. https://www.numdam.org/articles/10.1051/m2an:2003026/

[1] R.A. Adams, Sobolev Spaces. First edition, Academic Press, New York (1975). | MR | Zbl

[2] M.G. Ancona, Diffusion-drift modelling of strong inversion layers. COMPEL 6 (1987) 11-18.

[3] J. Barrett, J. Blowey and H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80 (1998) 525-556. | Zbl

[4] N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model. Z. Angew. Math. Phys. 49 (1998) 251-275. | Zbl

[5] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations. J. Differential Equations 83 (1990) 179-206. | Zbl

[6] A.L. Bertozzi, The mathematics of moving contact lines in thin liquid films. Notices Amer. Math. Soc. 45 (1998) 689-697. | Zbl

[7] A.L. Bertozzi and M.C. Pugh, Long-wave instabilities and saturation in thin film equations. Comm. Pure Appl. Math. 51 (1998) 625-661. | Zbl

[8] A.L. Bertozzi and L. Zhornitskaya, Positivity preserving numerical schemes for lubriaction-typeequations. SIAM J. Numer. Anal. 37 (2000) 523-555. | Zbl

[9] P.M. Bleher, J.L. Lebowitz and E.R. Speer, Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations. Comm. Pure Appl. Math. 47 (1994) 923-942. | Zbl

[10] W.M. Coughran and J.W. Jerome, Modular alorithms for transient semiconductor device simulation, part I: Analysis of the outer iteration, in Computational Aspects of VLSI Design with an Emphasis on Semiconductor Device Simulations, R.E. Bank Ed. (1990) 107-149. | Zbl

[11] R. Dal Passo, H. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence and quantitative behavior of solutions. SIAM J. Math. Anal. 29 (1998) 321-342. | Zbl

[12] C.L. Gardner, The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (1994) 409-427. | Zbl

[13] C.L. Gardner and Ch. Ringhofer, Approximation of thermal equilibrium for quantum gases with discontinuous potentials and applications to semiconductor devices. SIAM J. Appl. Math. 58 (1998) 780-805. | Zbl

[14] I. Gasser and A. Jüngel, The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z. Angew. Math. Phys. 48 (1997) 45-59. | Zbl

[15] I. Gasser and P.A. Markowich, Quantum hydrodynamics, Wigner transform and the classical limit. Asymptot. Anal. 14 (1997) 97-116. | Zbl

[16] G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87 (2000) 113-152. | Zbl

[17] M.T. Gyi and A. Jüngel, A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Differential Equations 5 (2000) 773-800.

[18] A. Jüngel, Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, PNLDE 41 (2001). | MR | Zbl

[19] A. Jüngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth order parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000) 760-777. | Zbl

[20] A. Jüngel and R. Pinnau, A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system. SIAM J. Numer. Anal. 39 (2001) 385-406. | Zbl

[21] P.A. Markowich, Ch. A. Ringhofer and Ch. Schmeiser, Semiconductor Equations. First edition, Springer-Verlag, Wien (1990). | Zbl

[22] F. Pacard and A. Unterreiter, A variational analysis of the thermal equilibrium state of charged quantum fluids. Comm. Partial Differential Equations 20 (1995) 885-900. | Zbl

[23] P. Pietra and C. Pohl, Weak limits of the quantum hydrodynamic model. To appear in Proc. International Workshop on Quantum Kinetic Theory.

[24] R. Pinnau, A note on boundary conditions for quantum hydrodynamic models. Appl. Math. Lett. 12 (1999) 77-82. | Zbl

[25] R. Pinnau, The linearized transient quantum drift diffusion model - stability of stationary states. ZAMM 80 (2000) 327-344. | Zbl

[26] R. Pinnau, Numerical study of the Quantum Euler-Poisson model. To appear in Appl. Math. Lett. | Zbl

[27] R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum drift diffusion model. SIAM J. Numer. Anal. 37 (1999) 211-245. | Zbl

[28] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65-96. | Zbl

[29] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. First edition, Plenum Press, New York (1987). | MR | Zbl

  • Di Michele, Federica; Marcati, Pierangelo; Rubino, Bruno Stationary solution for transient quantum hydrodynamics with bohmenian-type boundary conditions, Computational and Applied Mathematics, Volume 36 (2017) no. 1, p. 459 | DOI:10.1007/s40314-015-0235-2
  • Liu, Yannan; Sun, Wenlong; Li, Yeping Existence of global attractor for the one-dimensional bipolar quantum drift-diffusion model, Wuhan University Journal of Natural Sciences, Volume 22 (2017) no. 4, p. 277 | DOI:10.1007/s11859-017-1247-0
  • Jüngel, Ansgar; Milišić, Josipa‐Pina Entropy dissipative one‐leg multistep time approximations of nonlinear diffusive equations, Numerical Methods for Partial Differential Equations, Volume 31 (2015) no. 4, p. 1119 | DOI:10.1002/num.21938
  • Bukal, Mario; Emmrich, Etienne; Jüngel, Ansgar Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation, Numerische Mathematik, Volume 127 (2014) no. 2, p. 365 | DOI:10.1007/s00211-013-0588-7
  • Bian, Shen; Chen, Li; Dreher, Michael Boundary layer analysis in the semiclassical limit of a quantum drift–diffusion model, Journal of Differential Equations, Volume 253 (2012) no. 1, p. 356 | DOI:10.1016/j.jde.2012.03.008
  • Chen, Xiuqing; Chen, Li; Sun, Caiyun A sixth-order parabolic system in semiconductors, Chinese Annals of Mathematics, Series B, Volume 32 (2011) no. 2, p. 265 | DOI:10.1007/s11401-011-0632-9
  • Chen, Li; Dreher, Michael Viscous quantum hydrodynamics and parameter-elliptic systems, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 5, p. 520 | DOI:10.1002/mma.1377
  • Chen, Li; Dreher, Michael Quantum Semiconductor Models, Partial Differential Equations and Spectral Theory (2011), p. 1 | DOI:10.1007/978-3-0348-0024-2_1
  • Qiangchang, Ju; Li, Chen Semiclassical limit for bipolar quantum drift-diffusion model, Acta Mathematica Scientia, Volume 29 (2009) no. 2, p. 285 | DOI:10.1016/s0252-9602(09)60029-1
  • Ju, Qiang Chang The semiclassical limit in the quantum drift-diffusion model, Acta Mathematica Sinica, English Series, Volume 25 (2009) no. 2, p. 253 | DOI:10.1007/s10114-008-7098-z
  • Chen, Xiu Qing; Chen, Li The bipolar quantum drift-diffusion model, Acta Mathematica Sinica, English Series, Volume 25 (2009) no. 4, p. 617 | DOI:10.1007/s10114-009-7171-2
  • Chen, Qiang; Guan, Ping Weak solutions to the stationary quantum drift-diffusion model, Journal of Mathematical Analysis and Applications, Volume 359 (2009) no. 2, p. 666 | DOI:10.1016/j.jmaa.2009.06.030
  • Chen, Xiuqing; Chen, Li; Jian, Huaiyu Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-diffusion model, Nonlinear Analysis: Real World Applications, Volume 10 (2009) no. 3, p. 1321 | DOI:10.1016/j.nonrwa.2008.01.008
  • Chen, Xiuqing; Guo, Yingchun The Multidimensional Bipolar Quantum Drift-diffusion Model, Advanced Nonlinear Studies, Volume 8 (2008) no. 4, p. 799 | DOI:10.1515/ans-2008-0409
  • Chen, Li; Ju, Qiangchang The semiclassical limit in the quantum drift-diffusion equations with isentropic pressure, Chinese Annals of Mathematics, Series B, Volume 29 (2008) no. 4, p. 369 | DOI:10.1007/s11401-007-0314-9
  • Pietra, P.; Vauchelet, N. Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET, Journal of Computational Electronics, Volume 7 (2008) no. 2, p. 52 | DOI:10.1007/s10825-008-0253-z
  • Chen, Xiuqing; Chen, Li Initial time layer problem for quantum drift-diffusion model, Journal of Mathematical Analysis and Applications, Volume 343 (2008) no. 1, p. 64 | DOI:10.1016/j.jmaa.2008.01.015
  • Chen, Xiuqing; Chen, Li; Jian, Huaiyu The Dirichlet problem of the quantum drift-diffusion model, Nonlinear Analysis: Theory, Methods Applications, Volume 69 (2008) no. 9, p. 3084 | DOI:10.1016/j.na.2007.09.003
  • Chen, Li; Chen, Xiuqing Dirichlet-neumann problem for unipolar isentropic quantum drift-diffusion model, Tsinghua Science and Technology, Volume 13 (2008) no. 4, p. 560 | DOI:10.1016/s1007-0214(08)70089-0
  • Chen, Xiuqing The Global Existence and Semiclassical Limit of Weak Solutions to Multidimensional Quantum Drift-diffusion Model, Advanced Nonlinear Studies, Volume 7 (2007) no. 4, p. 651 | DOI:10.1515/ans-2007-0408
  • Chen, Xiuqing; Chen, Li; Jian, Huaiyu The Existence and Long-Time Behavior of Weak Solution to Bipolar Quantum Drift-Diffusion Model*, Chinese Annals of Mathematics, Series B, Volume 28 (2007) no. 6, p. 651 | DOI:10.1007/s11401-006-0568-7

Cité par 21 documents. Sources : Crossref