Semi-smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an
Mots-clés : semi-smooth Newton methods, contact problems, variational inequalities, bilateral constraints, superlinear convergence
@article{M2AN_2003__37_1_41_0, author = {Ito, Kazufumi and Kunisch, Karl}, title = {Semi-smooth {Newton} methods for variational inequalities of the first kind}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {41--62}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/m2an:2003021}, zbl = {1027.49007}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2003021/} }
TY - JOUR AU - Ito, Kazufumi AU - Kunisch, Karl TI - Semi-smooth Newton methods for variational inequalities of the first kind JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 41 EP - 62 VL - 37 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003021/ DO - 10.1051/m2an:2003021 LA - en ID - M2AN_2003__37_1_41_0 ER -
%0 Journal Article %A Ito, Kazufumi %A Kunisch, Karl %T Semi-smooth Newton methods for variational inequalities of the first kind %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 41-62 %V 37 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003021/ %R 10.1051/m2an:2003021 %G en %F M2AN_2003__37_1_41_0
Ito, Kazufumi; Kunisch, Karl. Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 1, pp. 41-62. doi : 10.1051/m2an:2003021. https://www.numdam.org/articles/10.1051/m2an:2003021/
[1] Constrained Optimization and Lagrange Mulitpliers. Academic Press, New York (1982). | MR
,[2] A comparison of a Moreau-Yosida based active strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000) 495-521. | Zbl
, , and ,[3] Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176-1194. | Zbl
, and ,[4] Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7 (1997) 871-887. | Zbl
,[5] Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984). | MR | Zbl
,[6] Analyse Numerique des Inequations Variationnelles. Vol. 1, Dunod, Paris (1976). | Zbl
, and ,[7] The primal-dual active set strategy as semi-smooth Newton method. SIAM J. Optim. (to appear). | Zbl
, and ,[8] Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24 (1987) 1046-1065. | Zbl
,[9] Adaptive multigrid methods for obstacle problems. SIAM J. Numer. Anal. 31 (1994) 301-323. | Zbl
and ,[10] Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinear Anal. 41 (2000) 573-589. | Zbl
and ,[11] Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41 (2000) 343-364. | Zbl
and ,[12] An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980). | MR | Zbl
and ,[13] Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). | Zbl
,[14] Semi-smooth Newton methods for operator equations in function space. SIAM J. Optim. (to appear). | Zbl
,Cité par Sources :