Numerical study of two sparse AMG-methods
ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 1, pp. 133-142.

A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.

DOI : 10.1051/m2an:2003016
Classification : 65F10, 65N22
Mots clés : algebraic multigrid, Schur complement, Lagrange multipliers
@article{M2AN_2003__37_1_133_0,
     author = {Martikainen, Janne},
     title = {Numerical study of two sparse {AMG-methods}},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {133--142},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {1},
     year = {2003},
     doi = {10.1051/m2an:2003016},
     mrnumber = {1972654},
     zbl = {1030.65128},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2003016/}
}
TY  - JOUR
AU  - Martikainen, Janne
TI  - Numerical study of two sparse AMG-methods
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 133
EP  - 142
VL  - 37
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2003016/
DO  - 10.1051/m2an:2003016
LA  - en
ID  - M2AN_2003__37_1_133_0
ER  - 
%0 Journal Article
%A Martikainen, Janne
%T Numerical study of two sparse AMG-methods
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 133-142
%V 37
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2003016/
%R 10.1051/m2an:2003016
%G en
%F M2AN_2003__37_1_133_0
Martikainen, Janne. Numerical study of two sparse AMG-methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 1, pp. 133-142. doi : 10.1051/m2an:2003016. http://www.numdam.org/articles/10.1051/m2an:2003016/

[1] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1972/73) 179-192. | Zbl

[2] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI, Paris (1989-1991) 13-51. Longman Sci. Tech., Harlow (1994). | Zbl

[3] J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp. 47 (1986) 103-134. | Zbl

[4] J.H. Bramble, J.E. Pasciak and Jinchao Xu, Parallel multilevel preconditioners. Math. Comp. 55 (1990) 1-22. | Zbl

[5] Qianshun Chang, Yau Shu Wong and Hanqing Fu, On the algebraic multigrid method. J. Comput. Phys. 125 (1996) 279-292. | Zbl

[6] M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39 (1982) 51-64. | Zbl

[7] R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Periaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Periaux and M.F. Wheeler Eds., Wiley (1997) 270-279. | Zbl

[8] R. Glowinski, Tsorng-Whay Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. | Zbl

[9] G.H. Golub and D. Mayers, The use of preconditioning over irregular regions, in Computing methods in applied sciences and engineering VI, Versailles (1983) 3-14. North-Holland, Amsterdam (1984). | Zbl

[10] A. Greenbaum, Iterative methods for solving linear systems. SIAM, Philadelphia, PA (1997). | MR | Zbl

[11] F. Kickinger, Algebraic multi-grid for discrete elliptic second-order problems, in Multigrid methods V, Stuttgart (1996) 157-172. Springer, Berlin (1998). | Zbl

[12] Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal. Math. Modelling 10 (1995) 187-211. | Zbl

[13] Yu.A. Kuznetsov, Overlapping domain decomposition with non-matching grids. East-West J. Numer. Math. 6 (1998) 299-308. | Zbl

[14] R.A.E. Mäkinen, T. Rossi and J. Toivanen, A moving mesh fictitious domain approach for shape optimization problems. ESAIM: M2AN 34 (2000) 31-45. | Numdam | Zbl

[15] J. Martikainen, T. Rossi and J. Toivanen, Multilevel preconditioners for Lagrange multipliers in domain imbedding. Electron. Trans. Numer. Anal. (to appear). | MR | Zbl

[16] G. Meurant, A multilevel AINV preconditioner. Numer. Algorithms 29 (2002) 107-129. | Zbl

[17] J.W. Ruge and K. Stüben, Algebraic multigrid. SIAM, Philadelphia, PA, Multigrid methods (1987) 73-130.

[18] D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal. 31 (1994) 1352-1367. | Zbl

[19] C.H. Tong, T.F. Chan, and C.-C. Jay Kuo, A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Statist. Comput. 12 (1991) 1486-1495. | Zbl

Cité par Sources :