We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter
Mots-clés : uniform stabilization, singular limit, von kármán system, beams, plates
@article{M2AN_2002__36_4_657_0, author = {Menzala, G. Perla and Pazoto, Ademir F. and Zuazua, Enrique}, title = {Stabilization of {Berger-Timoshenko's} equation as limit of the uniform stabilization of the von {K\'arm\'an} system of beams and plates}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {657--691}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/m2an:2002029}, zbl = {1073.35040}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2002029/} }
TY - JOUR AU - Menzala, G. Perla AU - Pazoto, Ademir F. AU - Zuazua, Enrique TI - Stabilization of Berger-Timoshenko's equation as limit of the uniform stabilization of the von Kármán system of beams and plates JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 657 EP - 691 VL - 36 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2002029/ DO - 10.1051/m2an:2002029 LA - en ID - M2AN_2002__36_4_657_0 ER -
%0 Journal Article %A Menzala, G. Perla %A Pazoto, Ademir F. %A Zuazua, Enrique %T Stabilization of Berger-Timoshenko's equation as limit of the uniform stabilization of the von Kármán system of beams and plates %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 657-691 %V 36 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2002029/ %R 10.1051/m2an:2002029 %G en %F M2AN_2002__36_4_657_0
Menzala, G. Perla; Pazoto, Ademir F.; Zuazua, Enrique. Stabilization of Berger-Timoshenko's equation as limit of the uniform stabilization of the von Kármán system of beams and plates. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 4, pp. 657-691. doi : 10.1051/m2an:2002029. https://www.numdam.org/articles/10.1051/m2an:2002029/
[1] Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl. 41 (1973) 69-90. | Zbl
,[2] Mathematical elasticity, Vol. II. Theory of plates. Stud. Math. Appl. 27 (1997). | MR | Zbl
,[3] Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elasticity 19 (1988) 111-161. | Zbl
, , , and ,[4] Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl. 29 (1970) 443-454. | Zbl
,[5] Decay estimates for some damped hyperbolic equations. Arch. Rational Mech. Anal. 100 (1998) 191-206. | Zbl
and ,[6] Hardy's and Korn's type inequalities and their applications. Rendiconti di Matematica VII (1990) 641-666. | Zbl
and ,[7] A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990) 33-55. | Zbl
and ,[8] Boundary stabilization of thin plates. SIAM Stud. Appl. Math., Philadelphia (1989). | MR | Zbl
,[9] Recent progress in exact boundary controllability and uniform stability of thin beams and plates. Lect. Notes in Pure and Appl. Math. 128, Dekker, New York (1991) 61-111. | Zbl
,[10] Weak, classical and intermediate solutions to full von Kármán system of dynamic nonlinear elasticity. Appl. Anal. 68 (1998) 121-145. | Zbl
,[11] Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differential Equations 91 (1991) 355-388. | Zbl
and ,[12] Perturbations singulières dans les problèmes aux limites et contrôle optimal. Springer-Verlag, Berlin, in Lectures Notes in Math. 323 (1973). | MR | Zbl
,[13] Nonlinear oscillations. Wiley-Interscience, New York (1989). | MR | Zbl
and ,[14] Uniform stabilization of a nonlinear beam model with thermal effects and nonlinear boundary dissipation. Funkcial. Ekvac. 43 (2000) 339-360. | Zbl
and ,[15] Boundary stabilization for the von Karman equations. SIAM J. Control Optim. 33 (1995) 255-273 | Zbl
and ,[16] Global existence of the full von Kármán system. Appl. Math. Optim. 34 (1996) 139-160. | Zbl
and ,
[17] The beam equation as a limit of
[18] Timoshenko's beam equation as limit of a nonlinear one-dimensional von Kármán system. Proc. Roy. Soc. Edinburg Sect. A 130 (2000) 855-875. | Zbl
and ,[19] Timoshenko's plate equation as a singular limit of the dynamical von Kármán system. J. Math. Pures Appl. (9) 79 (2000) 73-94. | Zbl
and ,[20] On the uniqueness theorem for generalized solutions of initial-boundary problems for the Marguerre-Vlasov vibrations of shallow shells with clamped boundary conditions. Appl. Math. Optim. 39 (1999) 309-326. | Zbl
,
[21] Compact sets in the space
[22] Mathematical modelling of rods. Handbook of numerical analysis, Vol. IV, North Holland, Amsterdam (1996) 487-974. | Zbl
and ,[23] Stability and decay for a class of nonlinear hyperbolic problems. Asymptot. Anal. 1 (1988) 1-28. | Zbl
,Cité par Sources :