Central-upwind schemes for the Saint-Venant system
ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 397-425.

We present one- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutions in which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preserve this delicate balance with numerical schemes. Small perturbations of these states are also very difficult to compute. Our approach is based on extending semi-discrete central schemes for systems of hyperbolic conservation laws to balance laws. Special attention is paid to the discretization of the source term such as to preserve stationary steady-state solutions. We also prove that the second-order version of our schemes preserves the nonnegativity of the height of the water. This important feature allows one to compute solutions for problems that include dry areas.

DOI : 10.1051/m2an:2002019
Classification : 65M06, 35L65
Mots clés : Saint-Venant system, shallow water equations, high-order central-upwind schemes, balance laws, conservation laws, source terms
@article{M2AN_2002__36_3_397_0,
     author = {Kurganov, Alexander and Levy, Doron},
     title = {Central-upwind schemes for the {Saint-Venant} system},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {397--425},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {3},
     year = {2002},
     doi = {10.1051/m2an:2002019},
     mrnumber = {1918938},
     zbl = {1137.65398},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2002019/}
}
TY  - JOUR
AU  - Kurganov, Alexander
AU  - Levy, Doron
TI  - Central-upwind schemes for the Saint-Venant system
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2002
SP  - 397
EP  - 425
VL  - 36
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2002019/
DO  - 10.1051/m2an:2002019
LA  - en
ID  - M2AN_2002__36_3_397_0
ER  - 
%0 Journal Article
%A Kurganov, Alexander
%A Levy, Doron
%T Central-upwind schemes for the Saint-Venant system
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 397-425
%V 36
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2002019/
%R 10.1051/m2an:2002019
%G en
%F M2AN_2002__36_3_397_0
Kurganov, Alexander; Levy, Doron. Central-upwind schemes for the Saint-Venant system. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 397-425. doi : 10.1051/m2an:2002019. http://www.numdam.org/articles/10.1051/m2an:2002019/

[1] A. Abdulle, Fourth Order Chebyshev Methods with Recurrence Relation. SIAM J. Sci. Comput. 23 (2002) 2041-2054. | Zbl

[2] A. Abdulle and A. Medovikov, Second Order Chebyshev Methods Based on Orthogonal Polynomials. Numer. Math. 90 (2001) 1-18. | Zbl

[3] P. Arminjon and M.-C. Viallon, Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C. R. Acad. Sci. Paris Sér. I Math. t. 320 (1995) 85-88. | Zbl

[4] P. Arminjon, M.-C. Viallon and A. Madrane, A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1-22. | Zbl

[5] E. Audusse, M.O. Bristeau and B. Perthame, Kinetic Schemes for Saint-Venant Equations With Source Terms on Unstructured Grids. INRIA Report RR-3989 (2000).

[6] A. Bermudez and M.E. Vasquez, Upwind Methods for Hyperbolic Conservation Laws With Source Terms. Comput. & Fluids 23 (1994) 1049-1071. | Zbl

[7] F. Bianco, G. Puppo and G. Russo, High Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM J. Sci. Comput. 21 (1999) 294-322. | Zbl

[8] T. Buffard, T. Gallouët and J.-M. Hérard, A Sequel to a Rough Godunov Scheme. Application to Real Gas Flows. Comput. & Fluids 29-7 (2000) 813-847. | Zbl

[9] S. Gottlieb, C.-W. Shu and E. Tadmor, High Order Time Discretization Methods with the Strong Stability Property. SIAM Rev. 43 (2001) 89-112. | Zbl

[10] K.O. Friedrichs and P.D. Lax, Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. USA 68 (1971) 1686-1688. | Zbl

[11] T. Gallouët, J.-M. Hérard and N. Seguin, Some Approximate Godunov Schemes to Compute Shallow-Water Equations with Topography. Computers and Fluids (to appear). | MR | Zbl

[12] J.F. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. | Zbl

[13] L. Gosse, A Well-Balanced Scheme Using Non-Conservative Products Designed for Hyperbolic Systems of Conservation Laws With Source Terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365. | Zbl

[14] A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III. J. Comput. Phys. 71 (1987) 231-303. | Zbl

[15] G.-S. Jiang and E. Tadmor, Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | Zbl

[16] S. Jin, A Steady-state Capturing Method for Hyperbolic System with Geometrical Source Terms. ESAIM: M2AN 35 (2001) 631-645. | Numdam | Zbl

[17] A. Kurganov and D. Levy, A Third-Order Semi-Discrete Scheme for Conservation Laws and Convection-Diffusion Equations. SIAM J. Sci. Comput. 22 (2000) 1461-1488. | Zbl

[18] A. Kurganov, S. Noelle and G. Petrova, Semi-Discrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM J. Sci. Comput. 23 (2001) 707-740. | Zbl

[19] A. Kurganov and G. Petrova, A Third-Order Semi-Discrete Genuinely Multidimensional Central Scheme for Hyperbolic Conservation Laws and Related Problems. Numer. Math. 88 (2001) 683-729. | Zbl

[20] A. Kurganov and G. Petrova, Central Schemes and Contact Discontinuities. ESAIM: M2AN 34 (2000) 1259-1275. | Numdam | Zbl

[21] A. Kurganov and E. Tadmor, New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys. 160 (2000) 214-282. | Zbl

[22] B. Van Leer, Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method. J. Comput. Phys. 32 (1979) 101-136. | Zbl

[23] R.J. Leveque, Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm. J. Comput. Phys. 146 (1998) 346-365. | Zbl

[24] R.J. Leveque and D.S. Bale, Wave Propagation Methods for Conservation Laws with Source Terms, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 130 (1999) 609-618. | Zbl

[25] D. Levy, G. Puppo and G. Russo, Central WENO Schemes for Hyperbolic Systems of Conservation Laws. ESAIM: M2AN 33 (1999) 547-571. | Numdam | Zbl

[26] D. Levy, G. Puppo and G. Russo, Compact Central WENO Schemes for Multidimensional Conservation Laws. SIAM J. Sci. Comput. 22 (2000) 656-672. | Zbl

[27] S.F. Liotta, V. Romano and G. Russo, Central Schemes for Systems of Balance Laws, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 130 (1999) 651-660. | Zbl

[28] X.-D. Liu and S. Osher, Nonoscillatory High Order Accurate Self Similar Maximum Principle Satisfying Shock Capturing Schemes. I. SIAM J. Numer. Anal. 33 (1996) 760-779. | Zbl

[29] X.-D. Liu, S. Osher and T. Chan, Weighted Essentially Non-Oscillatory Schemes. J. Comput. Phys. 115 (1994) 200-212. | Zbl

[30] X.-D. Liu and E. Tadmor, Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws. Numer. Math. 79 (1998) 397-425. | Zbl

[31] A. Medovikov, High Order Explicit Methods for Parabolic Equations. BIT 38 (1998) 372-390. | Zbl

[32] H. Nessyahu and E. Tadmor, Non-Oscillatory Central Differencing for Hyperbolic Conservation Laws. J. Comput. Phys. 87 (1990) 408-463. | Zbl

[33] S. Noelle, A Comparison of Third and Second Order Accurate Finite Volume Schemes for the Two-Dimensional Compressible Euler Equations, Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 129 (1999) 757-766. | Zbl

[34] B. Perthame and C. Simeoni, A Kinetic Scheme for the Saint-Venant System with a Source Term. École Normale Supérieure, Report DMA-01-13. Calcolo 38 (2001) 201-301. | Zbl

[35] G. Russo, Central Schemes for Balance Laws, Proceedings of HYP2000. Magdeburg (to appear).

[36] A.J.C. De Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147-154. | JFM

[37] C.-W. Shu, Total-Variation-Diminishing Time Discretizations. SIAM J. Sci. Comput. 6 (1988) 1073-1084. | Zbl

[38] C.-W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. J. Comput. Phys. 77 (1988) 439-471. | Zbl

[39] P.K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 21 (1984) 995-1011. | Zbl

[40] E. Tadmor, Convenient Total Variation Diminishing Conditions for Nonlinear Difference Schemes. SIAM J. Numer. Anal. 25 (1988) 1002-1014. | Zbl

Cité par Sources :