On fully practical finite element approximations of degenerate Cahn-Hilliard systems
ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 4, pp. 713-748.

We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments with three components in one and two space dimensions are presented.

Classification : 35K35, 35K55, 35K65, 65M12, 65M60, 82C26
Mots clés : phase separation, multi-component systems, degenerate parabolic systems of fourth order, finite element method, convergence analysis
@article{M2AN_2001__35_4_713_0,
     author = {Barrett, John W. and Blowey, James F. and Garcke, Harald},
     title = {On fully practical finite element approximations of degenerate {Cahn-Hilliard} systems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {713--748},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {4},
     year = {2001},
     mrnumber = {1863277},
     zbl = {0987.35071},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2001__35_4_713_0/}
}
TY  - JOUR
AU  - Barrett, John W.
AU  - Blowey, James F.
AU  - Garcke, Harald
TI  - On fully practical finite element approximations of degenerate Cahn-Hilliard systems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2001
SP  - 713
EP  - 748
VL  - 35
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_2001__35_4_713_0/
LA  - en
ID  - M2AN_2001__35_4_713_0
ER  - 
%0 Journal Article
%A Barrett, John W.
%A Blowey, James F.
%A Garcke, Harald
%T On fully practical finite element approximations of degenerate Cahn-Hilliard systems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2001
%P 713-748
%V 35
%N 4
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_2001__35_4_713_0/
%G en
%F M2AN_2001__35_4_713_0
Barrett, John W.; Blowey, James F.; Garcke, Harald. On fully practical finite element approximations of degenerate Cahn-Hilliard systems. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 4, pp. 713-748. http://www.numdam.org/item/M2AN_2001__35_4_713_0/

[1] R.A. Adams and J. Fournier, Cone conditions and properties of Sobolev spaces. J. Math. Anal. Appl. 61 (1977) 713-734. | Zbl

[2] J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 16 (1996) 257-287. | Zbl

[3] J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numer. Math. 77 (1997) 1-34. | Zbl

[4] J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. IMA J. Numer. Anal. 18 (1998) 287-328. | Zbl

[5] J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy and a concentration dependent mobility matrix 9 (1999) 627-663. | Zbl

[6] J.W. Barrett and J.F. Blowey, An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. Numer. Math. 88 (2001) 255-297. | Zbl

[7] J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80 (1998) 525-556. | Zbl

[8] J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286-318. | Zbl

[9] J.F. Blowey, M.I.M. Copetti and C.M. Elliott, The numerical analysis of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 16 (1996) 111-139. | Zbl

[10] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, part i: Mathematical analysis. European J. Appl. Math. 2 (1991) 233-279. | Zbl

[11] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, part ii: Numerical analysis. European J. Appl. Math. 3 (1992) 147-179. | Zbl

[12] L. Bronsard, H. Garcke and B. Stoth, A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem, in Proc. Roy. Soc. Edinburgh 128 A (1998) 481-506. | Zbl

[13] J.F. Cialvaldini, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. | Zbl

[14] P.G. Ciarlet, Introduction to numerical linear algebra and optimisation. C.U.P., Cambridge (1988). | MR | Zbl

[15] D. De Fontaine, An analysis of clustering and ordering in multicomponent solid solutions - I. Stability criteria. J. Phys. Chem. Solids 33 (1972) 297-310.

[16] P.G. De Gennes, Dynamics of fluctuations and spinodal decomposition in polymer blends. J. Chem. Phys. 72 (1980) 4756-4763. | Zbl

[17] C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase transitions, in Mathematical models for phase change problems, J.F. Rodrigues Ed., Internat. Ser. Numer. Math. 88, Birkhäuser-Verlag, Basel (1989) 35-73. | Zbl

[18] C.M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996) 404-423. | Zbl

[19] C.M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Physica D 109 (1997) 242-256. | Zbl

[20] C.M. Elliott and S. Luckhaus, A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy. SFB256 University Bonn, Preprint 195 (1991).

[21] D.J. Eyre, Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53 (1993) 1686-1712. | Zbl

[22] H. Garcke, B. Nestler and B. Stoth, Anisotropy in multi phase systems: a phase field approach. Interfaces Free Bound. 1 (1999) 175-198. | Zbl

[23] H. Garcke and A. Novick-Cohen, A singular limit for a system of degenerate Cahn-Hilliard equations. Adv. Diff. Eq. 5 (2000) 401-434. | Zbl

[24] G. Grün and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113-152. | Zbl

[25] K. Ito and Y. Kohsaka, Three-phase boundary motion by surface diffusion: stability of a mirror symmetric stationary solution. Interfaces Free Bound. 3 (2001) 45-80. | Zbl

[26] P.L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979) 964-979. | Zbl

[27] J.E. Morral and J.W. Cahn, Spinodal decomposition in ternary systems. Acta Metall. 19 (1971) 1037-1045.

[28] A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modelling perspectives. Adv. Math. Sci. Appl. 8 (1998) 965-985. | Zbl

[29] F. Otto and W. E, Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107 (1997) 10177-10184. | Zbl

[30] L. Zhornitskaya and A.L. Bertozzi, Positivity preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37 (2000) 523-555. | Zbl