We propose a simple numerical method for capturing the steady state solution of hyperbolic systems with geometrical source terms. We use the interface value, rather than the cell-averages, for the source terms that balance the nonlinear convection at the cell interface, allowing the numerical capturing of the steady state with a formal high order accuracy. This method applies to Godunov or Roe type upwind methods but requires no modification of the Riemann solver. Numerical experiments on scalar conservation laws and the one dimensional shallow water equations show much better resolution of the steady state than the conventional method, with almost no new numerical complexity.
Mots clés : hyperbolic systems, source terms, steady state solution, shallow water equations, shock capturing methods
@article{M2AN_2001__35_4_631_0, author = {Jin, Shi}, title = {A steady-state capturing method for hyperbolic systems with geometrical source terms}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {631--645}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1862872}, zbl = {1001.35083}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_4_631_0/} }
TY - JOUR AU - Jin, Shi TI - A steady-state capturing method for hyperbolic systems with geometrical source terms JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 631 EP - 645 VL - 35 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_4_631_0/ LA - en ID - M2AN_2001__35_4_631_0 ER -
%0 Journal Article %A Jin, Shi %T A steady-state capturing method for hyperbolic systems with geometrical source terms %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 631-645 %V 35 %N 4 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_2001__35_4_631_0/ %G en %F M2AN_2001__35_4_631_0
Jin, Shi. A steady-state capturing method for hyperbolic systems with geometrical source terms. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 4, pp. 631-645. http://www.numdam.org/item/M2AN_2001__35_4_631_0/
[1] Upwind methods for hyperbolic conservation laws with source terms. Comput. & Fluids 23 (1994) 1049-1071. | Zbl
and ,[2] Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comp. (to appear). | MR | Zbl
, and ,[3] A new general Riemann solver for the shallow-water equations with friction and topography. Preprint (1999).
and ,[4] Some approximate Godunov schemes to compute shallow-water equations with topography. AIAA J. (to appear 2001). | MR
, and ,[5] Finite difference schemes for numerical computation of solutions of the equations of fluid dynamics. Math. USSR-Sb. 47 (1959) 271-306.
,[6] A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39 (2000) 135-159. | Zbl
,[7] A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms | MR | Zbl
,[8] A well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996). 543-546 | Zbl
and ,[9] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 1-16 1996. | Zbl
and ,[10] Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 1980-2007. | Zbl
, , and ,[11] Hyperbolic systems with supercharacteristic relaxations and roll waves. SIAM J. Appl. Math. 61 (2000) 271-292 (electronic). | Zbl
and ,[12] On the computation of roll waves. ESAIM: M2AN 35 (2001) 463-480. | Numdam | Zbl
and ,[13] On the evolution of roll waves. J. Fluid Mech. 245 (1992) 249-261. | Zbl
,[14] Numerical methods for conservation laws. Birkhäuser, Basel (1992). | MR | Zbl
,[15] Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346-365. | Zbl
,[16] Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357-372. | Zbl
,[17] Upwind differenced schemes for hyperbolic conservation laws with source terms, in Nonlinear Hyperbolic Problems, Proc. Adv. Res. Workshop, St. Étienne, 1986, Lect. Notes Math. Springer, Berlin, 1270 (1987) 41-45. | Zbl
,[18] Improved treatment of source terms in upwind schemes for shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497-526. | Zbl
,