@article{M2AN_1987__21_4_605_0,
author = {Durier, Roland},
title = {Meilleure approximation en norme vectorielle et th\'eorie de la localisation},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {605--626},
year = {1987},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {21},
number = {4},
mrnumber = {921829},
zbl = {0649.41019},
language = {fr},
url = {https://www.numdam.org/item/M2AN_1987__21_4_605_0/}
}
TY - JOUR AU - Durier, Roland TI - Meilleure approximation en norme vectorielle et théorie de la localisation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1987 SP - 605 EP - 626 VL - 21 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1987__21_4_605_0/ LA - fr ID - M2AN_1987__21_4_605_0 ER -
%0 Journal Article %A Durier, Roland %T Meilleure approximation en norme vectorielle et théorie de la localisation %J ESAIM: Modélisation mathématique et analyse numérique %D 1987 %P 605-626 %V 21 %N 4 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1987__21_4_605_0/ %G fr %F M2AN_1987__21_4_605_0
Durier, Roland. Meilleure approximation en norme vectorielle et théorie de la localisation. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 4, pp. 605-626. https://www.numdam.org/item/M2AN_1987__21_4_605_0/
[1] , L'analyse non linéaire et ses motivations économiques, Masson (1984). | Zbl | MR
[2] , , The structure of admissible points with respect to cone dominance, Journal Optimization Theory and Applications, 29 (1979) 573-614. | Zbl | MR
[3] , and , Finding efficient solutions for rectilinear distance location problem efficiently, European Journal of Operational Research, 6 (1986), 117-124. | Zbl | MR
[4] , On efficient points and Fermat-Weber problem, Working Paper, University of Dijon (1984).
[5] , Weighting factor results in vector optimization, Working Paper, University of Dijon (1985). | Zbl
[6] , , Geometrical properties of the Fermat-Weber problem, European Journal of Operational Research, 20 (1985), 332-343. | Zbl | MR
[7] , , Sets of efficient points in a normed space, Journal of Mathematical Analysis and Applications, à paraître. | Zbl
[8] , Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications, 22 (1968), 618-630. | Zbl | MR
[9] , , , Location theory, dominance and convexity : some further results, Operations Research, 28 (1980), 1241-1250. | Zbl
[10] , Structure of the efficient point set, Proceedings of the American Mathematical Society, 95 (1985), 433-440. | Zbl | MR
[11] , , La convexité dans les mathématiques de la décision, Hermann (1979).
[12] , Connectedness of the set of nondominated outcomes in multicriteria optimization, Journal of Optimization Theory and Applications, 25 (1978), 459-467. | Zbl | MR
[13] , Étude et utilisation de normes vectoriellesen analyse numérique linéaire, Thèse de Doctorat ès Sciences, Grenoble (1968).
[14] , Meilleure approximation en norme vectorielle et minima de Pareto, Modélisation Mathématique et Analyse Numérique, 19 (1985), 89-110. | Zbl | MR | Numdam
[15] , Convex Analysis, Princeton University Press (1970). | Zbl | MR
[16] , , , Some properties of location problems with block and round norms, Opérations Research, 32 (1984), 1309-1327. | Zbl | MR
[17] , , Characterizing efficient points in location problem under the one-infinity norm, Locational analysis of public facilities, ed. J. F. Thisse et H. G. Zoller, North Holland, Studies in mathematical and managed economies, 31, (1983), 413-429.
[18] , , Location theory, dominance and convexity,Operations research, 21 (1973), 314-321. | Zbl | MR
[19] , , , Efficient points in location problems, AIEE Transactions, 9 (1973), 238-246. | MR
[20] , On the connectedness of the set of efficient points in convex optimization problems with multiple or random objectives, Mathematische Operationsforschung und Statistik, ser. Optimization, 15 (1984), 379-387. | Zbl | MR
[21] , Optimality and efficiency, John Wiley and Sons (1982). | Zbl | MR






