Simultaneous Padé approximants to the Euler, exponential and logarithmic functions
Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 2, pp. 565-589.

Nous présentons une méthode générale qui permet d’obtenir des approximations simultanées de type Padé pour les fonctions exponentielles et logarithmes.

We present a general method to obtain simultaneous explicit Padé type approximations to the exponential and logarithmic functions.

DOI : 10.5802/jtnb.914
Classification : 33C45, 41A21, 33C20, 11J72
Mots-clés : Padé approximants, Orthogonal polynomials, Hypergeometric series
Rivoal, Tanguy 1

1 Institut Fourier CNRS et Université Grenoble 1 100 rue des maths, BP 74 38402 St Martin d’Hères cedex, France
@article{JTNB_2015__27_2_565_0,
     author = {Rivoal, Tanguy},
     title = {Simultaneous {Pad\'e} approximants to the {Euler,} exponential and logarithmic functions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {565--589},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {2},
     year = {2015},
     doi = {10.5802/jtnb.914},
     mrnumber = {3393167},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.914/}
}
TY  - JOUR
AU  - Rivoal, Tanguy
TI  - Simultaneous Padé approximants to the Euler, exponential and logarithmic functions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2015
SP  - 565
EP  - 589
VL  - 27
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.914/
DO  - 10.5802/jtnb.914
LA  - en
ID  - JTNB_2015__27_2_565_0
ER  - 
%0 Journal Article
%A Rivoal, Tanguy
%T Simultaneous Padé approximants to the Euler, exponential and logarithmic functions
%J Journal de théorie des nombres de Bordeaux
%D 2015
%P 565-589
%V 27
%N 2
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.914/
%R 10.5802/jtnb.914
%G en
%F JTNB_2015__27_2_565_0
Rivoal, Tanguy. Simultaneous Padé approximants to the Euler, exponential and logarithmic functions. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 2, pp. 565-589. doi : 10.5802/jtnb.914. http://www.numdam.org/articles/10.5802/jtnb.914/

[1] K. Alladi, M. L. Robinson, Legendre polynomials and irrationality, J. Reine Angew. Math. 318 (1980), 137–155. | MR | Zbl

[2] A. I. Aptekarev, A. Branquinho, W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355, 10 (2003), 3887–3914. | MR | Zbl

[3] A. I. Aptekarev (ed.), Rational approximation of Euler’s constant and recurrence relations, Current Problems in Math., 9, Steklov Math. Inst. RAN, (2007). (Russian) | Zbl

[4] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc. 11, 3 (1979), 268–272. | MR | Zbl

[5] F. Beukers, Legendre polynomials in irrationality proofs, Bull. Austral. Math. Soc. 22, 3 (1980), 431–438. | MR | Zbl

[6] E. Bombieri, J. Mueller, On effective measures of irrationality for a/b r and related numbers, J. Reine Angew. Math. 342 (1983), 173–196. | MR | Zbl

[7] T. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications 13, Gordon and Breach Science Publishers, 1978. | MR | Zbl

[8] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions, J. Math. Pures Appl. (9) 58, 4 (1979), 445–476. | MR | Zbl

[9] G. V. Chudnovsky, Formules d’Hermite pour les approximants de Padé de logarithmes et de fonctions binomes, et mesures d’irrationalité, C. R. Acad. Sci. Paris Sér. A-B 288, 21 (1979), 965–967. | MR | Zbl

[10] G. V. Chudnovsky, Approximations de Padé explicites pour les solutions des équations différentielles linéaires fuchsiennes C. R. Acad. Sci. Paris Sér. A-B 290, 3 (1980), 135–137. | MR | Zbl

[11] S. Fischler, T. Rivoal, Approximants de Padé et séries hypergéométriques équilibrées, J. Math. Pures Appl. 82, 10 (2003), 1369–1394. | MR | Zbl

[12] M. Hata, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. (9) 69, 2 (1990), 133–173. | MR | Zbl

[13] M. Huttner, Constructible sets of linear differential equations and effective rational approximations of polylogarithmic functions, Israel J. Math. 153 (2006), 1–43. | MR | Zbl

[14] A. Kuijlaars, K. McLaughlin, Asymptotic zero behavior of Laguerre polynomials with negative parameter, Constr. Approx. 20, 4 (2004), 497–523. | MR | Zbl

[15] K. Mahler, Applications of some formulae by Hermite to the approximation of exponentials and logarithms, Math. Ann. 168 (1967), 200–227. | MR | Zbl

[16] T. Matala-Aho, Type II Hermite-Padé approximations of generalized hypergeometric series, Constr. Approx. 33, 3 (2011), 289–312. | MR | Zbl

[17] Yu. V. Nesterenko, Hermite-Padé approximants of generalized hypergeometric functions (Russian) Mat. Sb. 185, 10 (1994), 39–72; translation in Russian Acad. Sci. Sb. Math. 83, 1 (1995), 189–219. | MR | Zbl

[18] G. Rhin, C. Viola, On a permutation group related to ζ(2), Acta Arith. 77, 1 (1996), 23–56. | MR | Zbl

[19] T. Rivoal, Rational approximations for values of derivatives of the gamma function, Trans. Amer. Math. Soc. 361, 11 (2009), 6115–6149. | MR | Zbl

[20] T. Rivoal, On the arithmetic nature of the values of the Gamma function, Euler’s constant and Gompertz’s constant, Michigan Math. J. 61 (2012), 239–254. | MR | Zbl

[21] E. B. Saff, R. Varga, On the zeros and poles of Padé approximants to e z , III, Numer. Math. 30 (1978), 241–266. | MR | Zbl

[22] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, 1966. | MR | Zbl

[23] V. N. Sorokin, Joint approximations of the square root, logarithm, and arcsine (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2009, 2, 65–69, translation in Moscow Univ. Math. Bull. 64, 2 (2009), 80–83. | MR | Zbl

[24] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math. 135 (1909), 284–305. | MR

[25] A. Thue, Berechnung aller Lösungen gewisser Gleichungen von der Form ax r -by r =f, Videnskabs-Selskabets Skrifter, I. math.-naturv. KL, 4, 9 S, Christiania 1918.

[26] W. Van Assche, Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory 2 (2006), 61–91. | MR | Zbl

[27] C. Viola, On Siegel’s method in Diophantine approximation to transcendental numbers, Number theory, II (Rome, 1995). Rend. Sem. Mat. Univ. Politec. Torino 53, 4 (1995), 455–469. | MR | Zbl

Cité par Sources :