Soient
où le signe
Dans cet article on construit le symbole modulaire de
Let
where the sign of
In this paper we construct the modular symbol attached to an Eisenstein series, and compute the special values. We give numerical examples of the congruence theorem stated above, and in the penultimate section we give the proof of the congruence theorem.
@article{JTNB_2014__26_3_709_0, author = {Heumann, Jay and Vatsal, Vinayak}, title = {Modular symbols, {Eisenstein} series, and congruences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {709--756}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {3}, year = {2014}, doi = {10.5802/jtnb.886}, mrnumber = {3320499}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.886/} }
TY - JOUR AU - Heumann, Jay AU - Vatsal, Vinayak TI - Modular symbols, Eisenstein series, and congruences JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 709 EP - 756 VL - 26 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.886/ DO - 10.5802/jtnb.886 LA - en ID - JTNB_2014__26_3_709_0 ER -
%0 Journal Article %A Heumann, Jay %A Vatsal, Vinayak %T Modular symbols, Eisenstein series, and congruences %J Journal de théorie des nombres de Bordeaux %D 2014 %P 709-756 %V 26 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.886/ %R 10.5802/jtnb.886 %G en %F JTNB_2014__26_3_709_0
Heumann, Jay; Vatsal, Vinayak. Modular symbols, Eisenstein series, and congruences. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 3, pp. 709-756. doi : 10.5802/jtnb.886. https://www.numdam.org/articles/10.5802/jtnb.886/
[1] J. Bellaïche, and S. Dasgupta, The
[2] J.E. Cremona, Algorithms for Modular Elliptic Curves, Second ed. Cambridge: Cambridge University Press, (1997). | MR | Zbl
[3] F. Diamond and J. Im, Modular Forms and Modular Curves, Conference Proceedings, Canadian Math. Soc., 17, (1995), 39–133. | MR | Zbl
[4] E. Friedman, Ideal class groups in basic
[5] R. Greenberg and G. Stevens,
[6] H. Hida, Elementary Theory of
[7] H. Hida, Galois representations into
[8] Y. Hirano, Congruences of modular forms and the Iwasawa
[9] B. Mazur, On the Arithmetic of Special Values of
[10] T. Miyake, Modular Forms, New York: Springer-Verlag, (1989). | Zbl
[11] H.L. Montgomery and R.C. Vaughan, Multiplicative Number Theory I. Classical Theory, New York: Cambridge University Press, (2007). | MR | Zbl
[12] A.A. Ogg, Modular Forms and Dirichlet Series, New York: W.A. Benjamin Inc., (1969). | MR | Zbl
[13] H. Rademacher, Topics in Analytic Number Theory, New York: Springer-Verlag, (1973). | MR | Zbl
[14] B. Schoeneberg, Elliptic Modular Functions, New York: Springer-Verlag, (1974). | MR | Zbl
[15] W.A. Stein, Modular Forms, a Computational Approach, Providence, RI: American Mathematical Society, (2007). | MR | Zbl
[16] G. Stevens, Arithmetic on Modular Curves, Boston: Birkhauser, (1982). | MR | Zbl
[17] G. Stevens, The Eisenstein Measure and Real Quadratic Fields, Theorie des Nombres, Quebec, (1989), 887–927. | MR | Zbl
[18] V. Vatsal, Canonical Periods and Congruence Formulae, Duke Math. J., 98, 2, (1999), 397–419. | MR | Zbl
[19] A. Wiles, Modular elliptic curves and Fermat’s last theorem., Annals of Mathematics, 141, (1995), 443–551. | MR | Zbl
Cité par Sources :