Dans cet article nous étudions une action du groupe de Galois absolu sur des arbres planaires bicolores. A l’encontre de l’action similaire fournie par la théorie des “dessins d’enfants” de Grothendieck, l’action est induite par l’action de sur des classes d’équivalence de polynômes conservateurs qui sont les exemples les plus simples de fonctions rationnelles finies postcritiques. Nous établissons les propriétés principales de l’action et la comparons avec l’action de Grothendieck.
In this paper we study an action of the absolute Galois group on bicolored plane trees. In distinction with the similar action provided by the Grothendieck theory of “Dessins d’enfants” the action is induced by the action of on equivalence classes of conservative polynomials which are the simplest examples of postcritically finite rational functions. We establish some basic properties of the action and compare it with the Grothendieck action.
@article{JTNB_2008__20_1_205_0, author = {Pakovich, Fedor}, title = {Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {205--218}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {1}, year = {2008}, doi = {10.5802/jtnb.622}, mrnumber = {2434164}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.622/} }
TY - JOUR AU - Pakovich, Fedor TI - Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 205 EP - 218 VL - 20 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.622/ DO - 10.5802/jtnb.622 LA - en ID - JTNB_2008__20_1_205_0 ER -
%0 Journal Article %A Pakovich, Fedor %T Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees %J Journal de théorie des nombres de Bordeaux %D 2008 %P 205-218 %V 20 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.622/ %R 10.5802/jtnb.622 %G en %F JTNB_2008__20_1_205_0
Pakovich, Fedor. Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 205-218. doi : 10.5802/jtnb.622. http://www.numdam.org/articles/10.5802/jtnb.622/
[1] G. Belyi, On Galois extensions of a maximal cyclotomic field. Math. USSR, Izv. 14 (1980), 247–256. | MR | Zbl
[2] A. Douady, J. Hubbard, A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, No.2 (1993), 263-297. | Zbl
[3] A. Kostrikin, Conservative polynomials. In “Stud. Algebra Tbilisi”, 115–129, 1984. | Zbl
[4] S. Lando, A. Zvonkin, Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141(II), Berlin: Springer, 2004. | MR | Zbl
[5] K. Pilgrim, Dessins d’enfants and Hubbard trees, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 671–693. | Numdam | Zbl
[6] A. Poirier, On postcritically finite polynomials, part 1: critical portraits. Preprint, arxiv:math. DS/9305207.
[7] A. Poirier, On postcritically finite polynomials, part 2: Hubbard trees. Preprint, arxiv:math. DS/9307235.
[8] L. Schneps, Dessins d’enfants on the Riemann sphere. In “The Grothendieck Theory of Dessins D’enfants” (L. Shneps eds.), Cambridge University Press, London mathematical society lecture notes series 200 (1994), 47–77. | Zbl
[9] J. Silverman, The field of definition for dynamical systems on . Compos. Math. 98, No.3 (1995), 269–304. | Numdam | MR | Zbl
[10] S. Smale, The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. 4 (1981), 1–36. | MR | Zbl
[11] D. Tischler, Critical points and values of complex polynomials. J. of Complexity 5 (1989), 438–456. | MR | Zbl
Cité par Sources :