Nous démontrons que pour tout entier
We prove that, for all integers
@article{JTNB_2007__19_1_311_0, author = {Zudilin, Wadim}, title = {A new lower bound for ${\Vert (3/2)^k\Vert }$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {311--323}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.588}, zbl = {1127.11049}, mrnumber = {2332068}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.588/} }
TY - JOUR AU - Zudilin, Wadim TI - A new lower bound for ${\Vert (3/2)^k\Vert }$ JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 311 EP - 323 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.588/ DO - 10.5802/jtnb.588 LA - en ID - JTNB_2007__19_1_311_0 ER -
Zudilin, Wadim. A new lower bound for ${\Vert (3/2)^k\Vert }$. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 311-323. doi : 10.5802/jtnb.588. https://www.numdam.org/articles/10.5802/jtnb.588/
[1] A. Baker, J. Coates, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 77 (1975), 269–279. | MR | Zbl
[2] M. A. Bennett, Fractional parts of powers of rational numbers. Math. Proc. Cambridge Philos. Soc. 114 (1993), 191–201. | MR | Zbl
[3] M. A. Bennett, An ideal Waring problem with restricted summands. Acta Arith. 66 (1994), 125–132. | MR | Zbl
[4] F. Beukers, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 90 (1981), 13–20. | MR | Zbl
[5] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I. J. Math. Pures Appl. (9) 58 (1979), 445–476. | MR | Zbl
[6] F. Delmer, J.-M. Deshouillers, The computation of
[7] A. K. Dubickas, A lower bound for the quantity
[8] L. Habsieger, Explicit lower bounds for
[9] J. Kubina, M. Wunderlich, Extending Waring’s conjecture up to
[10] K. Mahler, On the fractional parts of powers of real numbers. Mathematika 4 (1957), 122–124. | MR | Zbl
[11] L. J. Slater, Generalized hypergeometric functions. Cambridge University Press, 1966. | MR | Zbl
[12] R. C. Vaughan, The Hardy–Littlewood method. Cambridge Tracts in Mathematics 125, Cambridge University Press, 1997. | MR | Zbl
[13] W. Zudilin, Ramanujan-type formulae and irrationality measures of certain multiples of
Cité par Sources :