This paper is concerned with non-trivial solvability in -adic integers of systems of additive forms. Assuming that the congruence equation has a solution with we have proved that any system of additive forms of degree with at least variables, has always non-trivial -adic solutions, provided . The assumption of the solubility of the above congruence equation is guaranteed, for example, if .
Cet article étudie l’existence de solutions non triviales en entiers -adiques de systèmes d’équations pour des formes additives. En supposant que l’équation ait une solution telle que , nous montrons qu’un système quelconque de formes additives de degré et d’au moins variables possède toujours des solutions -adiques non-triviales, si . L’hypothèse ci-dessus pour l’existence de solutions non-triviales de l’équation est vérifiée si, par exemple, .
Godhino, Hemar 1 ; Rodrigues, Paulo H. A. 2
@article{JTNB_2007__19_1_205_0,
author = {Godhino, Hemar and Rodrigues, Paulo H. A.},
title = {On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {205--219},
year = {2007},
publisher = {Universit\'e Bordeaux 1},
volume = {19},
number = {1},
doi = {10.5802/jtnb.582},
zbl = {1131.11023},
mrnumber = {2332062},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.582/}
}
TY - JOUR
AU - Godhino, Hemar
AU - Rodrigues, Paulo H. A.
TI - On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition
JO - Journal de théorie des nombres de Bordeaux
PY - 2007
SP - 205
EP - 219
VL - 19
IS - 1
PB - Université Bordeaux 1
UR - https://www.numdam.org/articles/10.5802/jtnb.582/
DO - 10.5802/jtnb.582
LA - en
ID - JTNB_2007__19_1_205_0
ER -
%0 Journal Article
%A Godhino, Hemar
%A Rodrigues, Paulo H. A.
%T On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition
%J Journal de théorie des nombres de Bordeaux
%D 2007
%P 205-219
%V 19
%N 1
%I Université Bordeaux 1
%U https://www.numdam.org/articles/10.5802/jtnb.582/
%R 10.5802/jtnb.582
%G en
%F JTNB_2007__19_1_205_0
Godhino, Hemar; Rodrigues, Paulo H. A. On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 205-219. doi: 10.5802/jtnb.582
[1] O.D. Atkinson, J. Brüdern, R.J. Cook, Simultaneous additive congruences to a large prime modulus. Mathematika 39 (1) (1992), 1–9. | Zbl | MR
[2] H. Davenport, D.J. Lewis, Simultaneous equations of additive type. Philos. Trans. Roy. Soc. London, Ser. A 264 (1969), 557–595. | Zbl | MR
[3] H. Godinho, P. H. A. Rodrigues, Conditions for the solvability of systems of two and three additive forms over p-adic fields. Proc. of the London Math. Soc. 91 (2005), 545–572. | Zbl | MR
[4] D.J. Lewis, H. Montgomery, On zeros of p-adic forms. Michigan Math. Journal 30 (1983), 83–87. | Zbl | MR
[5] L. Low, J. Pitman, A. Wolff, Simultaneous Diagonal Congruences. J. Number Theory 29 (1988), 31–59. | Zbl | MR
[6] I. D. Meir, Pairs of Additive Congruences to a Large Prime Modulus. J. Number Theory 63 (1997), 132–142. | Zbl | MR
Cité par Sources :





