Nous introduisons la notion de densité uniforme pondé- rée (supérieure et inférieure) d’une partie
We introduce the concept of uniform weighted density (upper and lower) of a subset
@article{JTNB_2007__19_1_191_0, author = {Giuliano Antonini, Rita and Grekos, Georges}, title = {Weighted uniform densities}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {191--204}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.581}, zbl = {1128.11005}, mrnumber = {2332061}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.581/} }
TY - JOUR AU - Giuliano Antonini, Rita AU - Grekos, Georges TI - Weighted uniform densities JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 191 EP - 204 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.581/ DO - 10.5802/jtnb.581 LA - en ID - JTNB_2007__19_1_191_0 ER -
Giuliano Antonini, Rita; Grekos, Georges. Weighted uniform densities. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 191-204. doi : 10.5802/jtnb.581. http://www.numdam.org/articles/10.5802/jtnb.581/
[1] R. Alexander, Density and multiplicative structure of sets of integers. Acta Arithm. 12 (1976), 321–332. | MR | Zbl
[2] T. C. Brown - A. R. Freedman, Arithmetic progressions in lacunary sets. Rocky Mountain J. Math. 17 (1987), 587–596. | MR | Zbl
[3] T. C. Brown - A. R. Freedman, The uniform density of sets of integers and Fermat’s last theorem. C. R. Math. Rep. Acad. Sci. Canada XII (1990), 1–6. | Zbl
[4] R. Giuliano Antonini - M. Paštéka, A comparison theorem for matrix limitation methods with applications. Uniform Distribution Theory 1 no. 1 (2006), 87–109.
[5] C. T. Rajagopal, Some limit theorems. Amer. J. Math. 70 (1948), 157–166. | MR | Zbl
[6] P. Ribenboim, Density results on families of diophantine equations with finitely many solutions. L’Enseignement Mathématique 39, (1993), 3–23. | Zbl
[7] H. Rohrbach - B. Volkmann, Verallgemeinerte asymptotische Dichten. J. Reine Angew. Math. 194 (1955), 195 –209. | MR | Zbl
[8] T. Šalát - V. Toma, A classical Olivier’s theorem and statistical convergence. Annales Math. Blaise Pascal 10 (2003), 305–313. | Numdam | Zbl
Cité par Sources :